Zhongjie Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6214893/publications.pdf

Version: 2024-02-01

122 4,214 30
papers citations h-index

122 122 4181 all docs docs citations times ranked citing authors

60

g-index

#	Article	IF	CITATIONS
1	Realizing External Quantum Efficiency over 25% with Low Efficiency Roll-Off in Polymer-Based Light-Emitting Diodes Synergistically Utilizing Intramolecular Sensitization and Bipolar Thermally Activated Delayed Fluorescence Monomer. CCS Chemistry, 2023, 5, 1005-1017.	7.8	16
2	Asymmetricalâ€Dendronized TADF Emitters for Efficient Nonâ€doped Solutionâ€Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes. Angewandte Chemie, 2022, 134, .	2.0	5
3	TADF dendronized polymer with vibrationally enhanced direct spin-flip between charge-transfer states for efficient non-doped solution-processed OLEDs. Chemical Engineering Journal, 2022, 435, 134924.	12.7	26
4	Asymmetricalâ€Dendronized TADF Emitters for Efficient Nonâ€doped Solutionâ€Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	36
5	Self-seeded crystallization and optical changes of polymorphism poly (vinylidene fluoride) films. Polymer, 2022, 241, 124556.	3.8	8
6	Activating Energy Transfer Tunnels by Tuning Local Electronegativity of Conjugated Polymeric Backbone for Highâ€Efficiency OLEDs with Low Efficiency Rollâ€Off. Advanced Functional Materials, 2022, 32, .	14.9	17
7	Thermally Activated Delayed Fluorescence Polysiloxanes with Short Delay Fluorescence Lifetimes. Macromolecular Rapid Communications, 2022, 43, e2200064.	3.9	6
8	Combining Polymer Zwitterions and Zinc Oxide for Highâ€Performance Inverted Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43, .	3.9	1
9	Photoluminescent Behaviors of Thermally Activated Delayed Fluorescence Polymeric Emitters in Nanofibers. Macromolecular Rapid Communications, 2021, 42, 2000588.	3.9	1
10	Ï€-Conjugated polymeric light emitting diodes with sky-blue emission by employing thermally activated delayed fluorescence mechanism. Chemical Engineering Journal, 2021, 417, 128089.	12.7	24
11	A Monochloro Copper Phthalocyanine Memristor with Highâ€Temperature Resilience for Electronic Synapse Applications. Advanced Materials, 2021, 33, e2006201.	21.0	51
12	Enhanced Upconversion of Triplet Excitons for Conjugated Polymeric Thermally Activated Delayed Fluorescence Emitters by Employing an Intramolecular Sensitization Strategy. ACS Applied Materials & amp; Interfaces, 2021, 13, 8997-9005.	8.0	14
13	Oriented Conjugated Copolymer Films with Controlled Crystal Forms and Molecular Stacking Modes for Enhanced Charge Transport and Photoresponsivity. ACS Applied Polymer Materials, 2021, 3, 2098-2108.	4.4	9
14	Controlling the Chain Orientation and Crystal Form of Poly(9,9-dioctylfluorene) Films for Low-Threshold Light-Pumped Lasers. Macromolecules, 2021, 54, 4342-4350.	4.8	7
15	Conductive Ionenes Promote Interfacial Self-Doping for Efficient Organic Solar Cells. ACS Applied Materials & Solar Cells.	8.0	18
16	Highâ€Efficiency Solutionâ€Processable OLEDs by Employing Thermally Activated Delayed Fluorescence Emitters with Multiple Conversion Channels of Triplet Excitons. Advanced Science, 2021, 8, e2101326.	11.2	43
17	Imidazole-Functionalized Imide Interlayers for High Performance Organic Solar Cells. ACS Energy Letters, 2021, 6, 3228-3235.	17.4	64
18	Temperature-Dependent Reversibility of Epitaxy between Isotactic Polystyrene and Polypropylene. Macromolecules, 2021, 54, 7564-7571.	4.8	6

#	Article	IF	CITATIONS
19	Structure and Mechanical Property of Melt-Drawn Oriented PLA Ultrathin Films. Macromolecules, 2021, 54, 9124-9134.	4.8	17
20	Differentiation of Electric Response in Highly Oriented Regioregular Poly(3-hexylthiophene) under Anisotropic Strain. ACS Applied Materials & Interfaces, 2021, 13, 2944-2951.	8.0	6
21	Synthesis and performance of non-conjugated main-chain thermally activated delayed fluorescence polymers with arylsilanes as host. Organic Electronics, 2020, 77, 105539.	2.6	4
22	Preparation of highly oriented single crystal arrays of C8-BTBT by epitaxial growth on oriented isotactic polypropylene. Journal of Materials Chemistry C, 2020, 8, 2155-2159.	5.5	11
23	Formation of Asymmetric Leaf-Shaped Crystals in Ultrathin Films of Oriented Polyethylene Molecules Resulting from High-Temperature Relaxation and Recrystallization. Macromolecules, 2020, 53, 346-354.	4.8	8
24	Morphological Evolution of Tetrachlorinated Perylene Bisimides with Lengthy Alkyl Substituent Polycrystalline Thin Films during Reversible Phase Transitions. ACS Omega, 2020, 5, 843-850.	3.5	0
25	The development of an abnormal isotactic polypropylene spherulite: Morphology and kinetics. Polymer Crystallization, 2020, 3, e10157.	0.8	1
26	Differently Linked Perylene Bisimide Dimers with Various Twisting and Phase Structures for Nonfullerene All-Small-Molecule Organic Solar Cells. ACS Omega, 2020, 5, 18449-18457.	3.5	5
27	Tacticity-Dependent Epitaxial Crystallization of Poly(<scp> </scp> -lactic acid) on an Oriented Polyethylene Substrate. Macromolecules, 2020, 53, 8487-8493.	4.8	8
28	Orientation of Poly($\hat{l}\mu$ -caprolactone) in Its Poly(vinyl chloride) Blends Crystallized under Strain: The Role of Strain Rate. Materials, 2020, 13, 5655.	2.9	3
29	A novel donor moiety 9,9,9′9′-tetramethyl-9,9′10,10′-tetrahydro-2,10′-biacridine ⟨i⟩via⟨ i⟩ one-pot arylation for TADF emitters and their application in highly efficient solution-processable OLEDs. Journal of Materials Chemistry C, 2020, 8, 8971-8979.	: C–H 5.5	14
30	A recyclable and photocontrollable resistive memory device based on polycoumarinsiloxanes. Journal of Materials Chemistry C, 2020, 8, 7527-7533.	5.5	6
31	Taming the Phase Transition Ability of Poly(vinylidene fluoride) from α to γ′ Phase. Macromolecules, 2020, 53, 5971-5979.	4.8	22
32	The design, synthesis and performance of thermally activated delayed fluorescence macromolecules. Polymer Chemistry, 2020, 11, 1555-1571.	3.9	58
33	Enhanced charge transport and thermoelectric performance of P(NDI2OD-T2) by epitaxial crystallization on highly oriented polyethylene substrates. Materials Chemistry Frontiers, 2020, 4, 661-668.	5.9	14
34	Phase transition behavior of Poly(vinylidene fluoride) in a blend with Poly(butylene adipate) at high temperature. Polymer, 2020, 194, 122409.	3.8	10
35	Halogenated π-conjugated polymeric emitters with thermally activated delayed fluorescence for highly efficient polymer light emitting diodes. Nano Energy, 2020, 73, 104800.	16.0	59
36	Band Spacing in Poly(3-hydroxybutyrate) and Its Blends with Poly(propylene carbonate): Dependence on Thermal Processing. Langmuir, 2019, 35, 11167-11174.	3.5	5

#	Article	lF	CITATIONS
37	Thermally Activated Delayed Fluorescence Polymer Emitters with Tunable Emission from Yellow to Warm White Regulated by Triphenylamine Derivatives. ACS Applied Polymer Materials, 2019, 1, 2204-2212.	4.4	11
38	Synergistic Effect of Solvent and Epitaxy on the Formation of Anisotropic Structures of P3HT and P3HT/PCBM Films. Journal of Physical Chemistry B, 2019, 123, 7233-7239.	2.6	14
39	Highly efficient white-emitting thermally activated delayed fluorescence polymers: Synthesis, non-doped white OLEDs and electroluminescent mechanism. Nano Energy, 2019, 65, 104057.	16.0	70
40	Synthesis and Cyclizationâ€Induced Charge Transfer of Rectangular Bisterthiophenesiloxanes. Chemistry - A European Journal, 2019, 25, 13701-13704.	3.3	1
41	Anisotropic Polyaniline/SWCNT Composite Films Prepared by in Situ Electropolymerization on Highly Oriented Polyethylene for High-Efficiency Ammonia Sensor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38169-38176.	8.0	30
42	The influence of molecular geometry on the efficiency of thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2019, 7, 6672-6684.	5. 5	53
43	Flexible and Fatigueâ€Resistant Ternary Electrical Memory Based on Alternative Copolysiloxane with Carbazole Donors and Imidazoleâ€Modified Naphthalimide Acceptors. Advanced Materials Technologies, 2019, 4, 1900084.	5.8	12
44	Modification of illite with calcium pimelate and its influence on the crystallization and mechanical property of isotactic polypropylene. Composites Part A: Applied Science and Manufacturing, 2019, 123, 200-207.	7.6	9
45	Highly Anisotropic P3HT Film Fabricated via Epitaxy on an Oriented Polyethylene Film and Solvent Vapor Treatment. Langmuir, 2019, 35, 7841-7847.	3.5	33
46	Deep-Blue Thermally Activated Delayed Fluorescence Polymers for Nondoped Solution-Processed Organic Light-Emitting Diodes. Macromolecules, 2019, 52, 2296-2303.	4.8	77
47	Impact of Methoxy Substituents on Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in All-Organic Donor–Acceptor Systems. Journal of Organic Chemistry, 2019, 84, 3801-3816.	3.2	43
48	Synergistic Effect of Hydrogen Bonds and Diffusion on the \hat{I}^2 -Crystallization of Poly(vinylidene) Tj ETQq0 0 0 rgB 2019, 58, 7389-7396.	「/Overlocl 3.7	₹ 10 Tf 50 30 24
49	Ultralight, Superelastic, and Fatigue-Resistant Graphene Aerogel Templated by Graphene Oxide Liquid Crystal Stabilized Air Bubbles. ACS Applied Materials & Interfaces, 2019, 11, 1303-1310.	8.0	68
50	Efficient triplet utilization in conventional solution-processed phosphorescent organic light emitting diodes using a thermal activated delayed fluorescence polymer as an assistant host. Journal of Materials Chemistry C, 2018, 6, 4800-4806.	5.5	16
51	All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nature Reviews Materials, 2018, 3, .	48.7	1,097
52	Thermally Activated Delayed Fluorescence Pendant Copolymers with Electron- and Hole-Transporting Spacers. ACS Applied Materials & Spacers. ACS Applied Materials & Spacers. Property of the Property of Spacers. ACS Applied Materials & Spacers. Property of Spacers. ACS Applied Materials & Spacers. Property of Spacers. ACS Applied Materials & Spacers. Property of Spac	8.0	47
53	Epitaxial Crystallization of Isotactic Poly(methyl methacrylate) from Different States on Highly Oriented Polyethylene Thin Film. Journal of Physical Chemistry B, 2018, 122, 9425-9433.	2.6	19
54	Synthesis and Chargeâ€Transporting Properties of Dibenzothiphene Dioxideâ€Based Polysiloxanes. Chemistry - an Asian Journal, 2018, 13, 3254-3260.	3.3	2

#	Article	IF	CITATIONS
55	Confinement Effects on the Crystallization of Poly(3-hydroxybutyrate). Macromolecules, 2018, 51, 5732-5741.	4.8	30
56	Polymorphic Behavior and Phase Transition of Poly(1-Butene) and Its Copolymers. Polymers, 2018, 10, 556.	4.5	59
57	Efficient Thermally Activated Delayed Fluorescence Conjugated Polymeric Emitters with Tunable Nature of Excited States Regulated via Carbazole Derivatives for Solution-Processed OLEDs. Macromolecules, 2018, 51, 4615-4623.	4.8	50
58	An abnormal melting behavior of isotactic polypropylene spherulites grown at low temperatures. Polymer, 2017, 111, 183-191.	3.8	14
59	Effects of Composition and Melting Time on the Phase Separation of Poly(3-hydroxybutyrate)/Poly(propylene carbonate) Blend Thin Films. Langmuir, 2017, 33, 1202-1209.	3.5	5
60	Main chain copolysiloxanes with terthiophene and perylenediimide units: synthesis, characterization and electrical memory. Polymer Chemistry, 2017, 8, 3515-3522.	3.9	6
61	Crystal Structure Regulation of Ferroelectric Poly(vinylidene fluoride) via Controlled Melt–Recrystallization. Industrial & Engineering Chemistry Research, 2017, 56, 4580-4587.	3.7	38
62	Nonfullerene-Acceptor All-Small-Molecule Organic Solar Cells Based on Highly Twisted Perylene Bisimide with an Efficiency of over 6%. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2739-2746.	8.0	39
63	Solutionâ€Processable Thermally Activated Delayed Fluorescence White OLEDs Based on Dualâ€Emission Polymers with Tunable Emission Colors and Aggregationâ€Enhanced Emission Properties. Advanced Optical Materials, 2017, 5, 1700435.	7.3	99
64	Pyridylpyrazole N^N ligands combined with sulfonyl-functionalised cyclometalating ligands for blue-emitting iridium(<scp>iii</scp>) complexes and solution-processable PhOLEDs. Dalton Transactions, 2017, 46, 10996-11007.	3.3	17
65	Diameter and thermal treatment dependent structure and optical properties of poly(3-hexylthiophene) nanotubes. Journal of Materials Chemistry C, 2017, 5, 8315-8322.	5.5	12
66	Polymorphism and Enzymatic Degradation of Poly(1,4-butylene adipate) and Its Binary Blends with Atactic Poly(3-hydroxybutyrate) and Poly(vinyl phenol). Industrial & Engineering Chemistry Research, 2017, 56, 14263-14269.	3.7	5
67	Rational Design of TADF Polymers Using a Donor–Acceptor Monomer with Enhanced TADF Efficiency Induced by the Energy Alignment of Charge Transfer and Local Triplet Excited States. Advanced Optical Materials, 2016, 4, 597-607.	7.3	235
68	Crystal Morphology of Poly(3-hydroxybutyrate) on Amorphous Poly(vinylphenol) Substrate. Langmuir, 2016, 32, 3983-3994.	3.5	10
69	A grazing incident XRD study on the structure of poly(3-hydroxybutyrate) ultrathin films sandwiched between Si wafers and amorphous polymers. Polymer Chemistry, 2016, 7, 3705-3713.	3.9	11
70	Polysiloxaneâ€Modified Tetraphenylethene: Synthesis, AIE Properties, and Sensor for Detecting Explosives. Macromolecular Rapid Communications, 2016, 37, 1772-1779.	3.9	24
71	A facile way to fabricate anisotropic P3HT films by combining epitaxy and electrochemical deposition. Chemical Communications, 2016, 52, 10972-10975.	4.1	29
72	Electrochemically deposited interlayer between PEDOT:PSS and phosphorescent emitting layer for multilayer solution-processed phosphorescent OLEDs. Journal of Materials Chemistry C, 2016, 4, 9509-9515.	5.5	20

#	Article	IF	CITATIONS
73	Pendant Homopolymer and Copolymers as Solution-Processable Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Macromolecules, 2016, 49, 5452-5460.	4.8	145
74	Polysiloxanes for optoelectronic applications. Progress in Materials Science, 2016, 83, 383-416.	32.8	76
75	Surface-induced highly oriented perylo[1,12-b,c,d]selenophene thin films for high performance organic field-effect transistors. Organic Electronics, 2016, 35, 186-192.	2.6	10
76	High efficiency organosilicon-containing polymer sensors for the detection of trinitrotoluene and dinitrotoluene. Journal of Materials Chemistry C, 2016, 4, 6756-6760.	5.5	27
77	The phase transition behavior of poly(butylene adipate) in the nanoporous anodic alumina oxide. Polymer Chemistry, 2016, 7, 410-417.	3.9	26
78	Effect of Anodic Alumina Oxide Pore Diameter on the Crystallization of Poly(butylene adipate). Langmuir, 2016, 32, 3269-3275.	3.5	25
79	Branched Crystalline Patterns of Poly(ε-caprolactone) and Poly(4-hydroxystyrene) Blends Thin Films. Journal of Physical Chemistry B, 2016, 120, 222-230.	2.6	10
80	Effects of Nanoporous Anodic Alumina Oxide on the Crystallization and Melting Behavior of Poly(vinylidene fluoride). Journal of Physical Chemistry B, 2016, 120, 843-850.	2.6	19
81	Epitaxially-crystallized oriented naphthalene bis(dicarboximide) morphology for significant performance improvement of electron-transporting thin-film transistors. Chemical Communications, 2016, 52, 4902-4905.	4.1	21
82	The development of a bilayer structure of poly(propylene carbonate)/poly(3-hydroxybutyrate) blends from the demixed melt. Physical Chemistry Chemical Physics, 2015, 17, 32225-32231.	2.8	15
83	Solution-Processed Blue/Deep Blue and White Phosphorescent Organic Light-Emitting Diodes (PhOLEDs) Hosted by a Polysiloxane Derivative with Pendant mCP (1,3-bis(9-carbazolyl)benzene). ACS Applied Materials & Derivative with Pendant mCP (1,0-bis(9-carbazolyl)benzene). ACS	8.0	44
84	The $\hat{l}^2\hat{l}\pm$ growth transition of isotactic polypropylene during stepwise crystallization at elevated temperature. Colloid and Polymer Science, 2015, 293, 2823-2830.	2.1	15
85	Synthesis of nitrogen-doped monolayer graphene with high transparent and n-type electrical properties. Journal of Materials Chemistry C, 2015, 3, 6172-6177.	5. 5	24
86	Synthesis and the aggregation induced enhanced emission effect of pyrene based polysiloxanes. Polymer Chemistry, 2015, 6, 7827-7832.	3.9	15
87	Multi-3,3′-Bicarbazole-Substituted Arylsilane Host Materials with Balanced Charge Transport for Highly Efficient Solution-Processed Blue Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Diodes. ACS	8.0	22
88	Highly conductive and stable polysiloxane-modified perylenebisimide nanosheets and nanowires by self-assembly and subsequent condensation. Physical Chemistry Chemical Physics, 2015, 17, 23069-23073.	2.8	3
89	Arylsilanes and siloxanes as optoelectronic materials for organic light-emitting diodes (OLEDs). Journal of Materials Chemistry C, 2015, 3, 9496-9508.	5.5	80
90	The synthesis and flash memory behavior of alternate copolymer containing carbazole donor and perylenediimide derivatives acceptor by the hybridization of organo-silicon. Journal of Materials Chemistry C, 2015, 3, 10249-10255.	5.5	16

#	Article	IF	Citations
91	The $\hat{l}\pm\hat{l}^2$ -iPP growth transformation of commercial-grade iPP during non-isothermal crystallization. CrystEngComm, 2015, 17, 9221-9227.	2.6	7
92	Synthesis of well-defined poly(phenylcarbazole-alt-triphenylphosphine oxide) siloxane as a bipolar host material for solution-processed deep blue phosphorescent devices. Polymer Chemistry, 2014, 5, 220-226.	3.9	26
93	Defect-controlled synthesis of graphene based nano-size electronic devices using in situ thermal treatment. Organic Electronics, 2014, 15, 685-691.	2.6	7
94	Anisotropic highly-conductive films of poly(3-methylthiophene) from epitaxial electropolymerization on oriented poly(vinylidene fluoride). Chemical Science, 2014, 5, 3240-3245.	7.4	32
95	A versatile hybrid polyphenylsilane host for highly efficient solution-processed blue and deep blue electrophosphorescence. Journal of Materials Chemistry C, 2014, 2, 8277-8284.	5.5	32
96	The effect of the poly(vinyl phenol) sublayer on the melting behavior of poly(butylene adipate) crystals. Polymer Chemistry, 2014, 5, 4293.	3.9	14
97	Large area uniformly oriented multilayer graphene with high transparency and conducting properties derived from highly oriented polyethylene films. Journal of Materials Chemistry C, 2014, 2, 6048-6055.	5.5	6
98	Synthesis of triphenylamine based polysiloxane as a blue phosphorescent host. Polymer Chemistry, 2014, 5, 5046-5052.	3.9	19
99	Oligosiloxane Functionalized with Pendant (1,3â€Bis(9â€carbazolyl)benzene) (mCP) for Solutionâ€Processed Organic Electronics. Chemistry - A European Journal, 2014, 20, 16233-16241.	3.3	17
100	The effect of poly(vinyl phenol) sublayer on the crystallization and melting behavior of poly(3-hydroxybutyrate) via hydrogen bonds. Polymer, 2014, 55, 5821-5828.	3.8	10
101	Crystallizability of poly(É>-caprolactone) blends with poly(vinylphenol) under different conditions. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1119-1127.	3.8	8
102	Crystallization behavior of disproportionately high and low molecular weight PEO blends. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1199-1209.	3.8	9
103	Structure Evolution of Poly(3-hexylthiophene) on Si Wafer and Poly(vinylphenol) Sublayer. Langmuir, 2014, 30, 7585-7592.	3.5	9
104	Synthesis of Alternating Copolysiloxane with Terthiophene and Perylenediimide Derivative Pendants for Involatile WORM Memory Device. Advanced Functional Materials, 2014, 24, 3446-3455.	14.9	55
105	Carbazole-based polysiloxane hosts for highly efficient solution-processed blue electrophosphorescent devices. Journal of Materials Chemistry C, 2013, 1, 5344.	5.5	40
106	Synthesis and properties of siloxane modified perylene bisimide discotic liquid crystals. Soft Matter, 2013, 9, 10739-10745.	2.7	30
107	Tetrachloroperylene diimide functionalized reduced graphene oxide sheets and their l–V behavior by current sensing atomic force microscopy. Journal of Materials Chemistry, 2012, 22, 18839.	6.7	11
108	Fabrication of High Toughness Poly(lactic acid) by Combining Plasticization with Cross-linking Reaction. Industrial & Engineering Chemistry Research, 2012, 51, 7273-7278.	3.7	18

#	Article	IF	CITATIONS
109	Reactive ladder-like poly(p-decyl anilino)silsesquioxane for functional material's precursor: Synthesis, characterization and functionalization. Reactive and Functional Polymers, 2012, 72, 503-508.	4.1	7
110	Supramolecular Template-Directed Synthesis of Soluble Quadruple-Chain Ladder Polyphenylsiloxane (Ph-QCLP) with High Molecular Weight. Chemistry of Materials, 2012, 24, 1968-1973.	6.7	14
111	An Optical Microscopy Study on the Phase Structure of Poly(<scp>l</scp> -lactide acid)/Poly(propylene) Tj ETQq1	1,0,78431 2.6	4ggBT /O∨
112	Synthesis of Dibenzothiopheneâ€Containing Ladder Polysilsesquioxane as a Blue Phosphorescent Host Material. Chemistry - A European Journal, 2012, 18, 4115-4123.	3.3	37
113	An Optical Microscopy Study on the Solvent-Induced Crystalline Morphology of Ladder Polyphenylsilsesquioxane. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 494-498.	4.9	O
114	Synthesis of ring-structured polysiloxane as host materials for blue phosphorescent device. Journal of Materials Chemistry, 2011, 21, 7777.	6.7	18
115	Ladder polysilsesquioxane for wide-band semiconductors: synthesis, optical properties and doped electrophosphorescent device. Journal of Materials Chemistry, 2011, 21, 11306.	6.7	15
116	A study on the hydrogen bonding interaction of the electrospun ladder polyphenylsilsesquioxane/polyisophthalamide composite fibers by ATR FT-IR. Polymer Chemistry, 2011, 2, 608-613.	3.9	11
117	Ladder Polysiloxanes for Optoelectronic Applications. , 2011, , .		O
118	Study of the Supramolecular Architecture-Directed Synthesis of a Well-Defined Triple-Chain Ladder Polyphenylsiloxane. Macromolecules, 2010, 43, 2130-2136.	4.8	27
119	In situ molecular composites of ladder polyphenylsilsesquioxane and polyisophthalamide and their electro-spinning fibers. Polymer Chemistry, 2010, 1, 1095.	3.9	9
120	Supramolecular architecture-directed synthesis of a reactive and purely inorganic ladder polyhydrosilsesquioxane. Chemical Communications, 2009, , 4079.	4.1	18
121	A Stable and Highâ€Efficiency Blueâ€Light Emitting Terphenylâ€Bridged Ladder Polysiloxane. Macromolecular Rapid Communications, 2008, 29, 1259-1263.	3.9	23
122	Dynamic mechanical and thermal properties of plasticized poly(lactic acid). Journal of Applied Polymer Science, 2006, 101, 1583-1590.	2.6	122