Venecio U Ultra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6214396/publications.pdf

Version: 2024-02-01

20 478
papers citations

933264 10 h-index 18 g-index

20 all docs 20 docs citations 20 times ranked 615 citing authors

#	Article	IF	CITATIONS
1	Heavy metals in soil, plants, and associated risk on grazing ruminants in the vicinity of Cu–Ni mine in Selebi-Phikwe, Botswana. Environmental Geochemistry and Health, 2022, 44, 1633-1648.	1.8	10
2	Enhanced establishment of Colophospermum mopane (Kirk ex Benth.) seedlings for phytoremediation of Cu-Ni mine tailings. Environmental Science and Pollution Research, 2022, , $1.$	2.7	2
3	Morupule fly ash as amendments in agricultural soil in Central Botswana. Environmental Technology and Innovation, 2022, 28, 102695.	3.0	9
4	Microplastic load in the surface water and Tilapia sparrmanii (Smith, 1840) of the river systems of Okavango Delta, Botswana. Environmental Monitoring and Assessment, 2022, 194, .	1.3	4
5	Influence of mycorrhiza and fly ash on the survival, growth and heavy metal accumulation in three Acacia species grown in Cu–Ni mine soil. Environmental Geochemistry and Health, 2021, 43, 1337-1353.	1.8	14
6	Rhizosphere properties and heavy metal accumulation of plants growing in the fly ash dumpsite, Morupule power plant, Botswana. Environmental Science and Pollution Research, 2021, 28, 20637-20649.	2.7	11
7	Growth and yield of lemongrass (<i>Cymbopogon citratus</i>) in fly ash with nutrient amendments and Mycorrhiza for three-ratoon period. International Journal of Phytoremediation, 2020, 22, 1551-1561.	1.7	12
8	Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea. BMC Public Health, 2018, 18, 528.	1.2	105
9	Elevated atmospheric temperature and CO2 altered the growth, carbon, and nitrogen distribution and the rhizosphere properties of Platanus occidentalis L. seedlings. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2015, 39, 679-691.	0.8	3
10	Soil Chemical and Microbial Properties and its Relationship with the Root Growth of Panax ginseng. International Journal of Agriculture and Biology, 2015, 17, 1157-1164.	0.2	2
11	Influence of Herbicides-pyroligneous Acids Mixtures on Some Soil Properties, Growth and Grain Quality of Paddy Rice. International Journal of Agriculture and Biology, 2015, 17, 499-506.	0.2	5
12	Effects of Rhizosphere Microorganisms and Wood Vinegar Mixtures on Rice Growth and Soil Properties. Hang uk Jakmul Hakhoe Chi, 2015, 60, 355-365.	0.2	9
13	Soil properties and microbial functional structure in the rhizosphere of <i>Pinus densiflora </i> (S.) Tj ETQq1 1 0.784 2013, 18, 149-158.	4314 rgBT 0.7	/Overlock I 10
14	Potential for the alleviation of arsenic toxicity in paddy rice using amorphous iron-(hydr)oxide amendments. Soil Science and Plant Nutrition, 2009, 55, 160-169.	0.8	40
15	Effects of methyl bromide fumigation, chloropicrin fumigation and steam sterilization on soil nitrogen dynamics and microbial properties in a pot culture experiment. Soil Science and Plant Nutrition, 2008, 54, 886-894.	0.8	46
16	Arbuscular mycorrhizal fungus (<i>Glomus aggregatum</i>) influences biotransformation of arsenic in the rhizosphere of sunflower (<i>Helianthus annuus</i>). Soil Science and Plant Nutrition, 2007, 53, 499-508.	0.8	60
17	Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower (Helianthus annuus L.) and on the transformation of arsenic in the rhizosphere. Plant and Soil, 2007, 290, 29-41.	1.8	82
18	Influence of Chelating Agent Addition on Copper Distribution and Microbial Activity in Soil and Copper Uptake by Brown Mustard (Brassica juncea). Soil Science and Plant Nutrition, 2005, 51, 193-202.	0.8	41

#	ŧ	Article	lF	CITATIONS
1	.9	Chemical changes under aerobic composting and nutrient supplying potential of banana residue compost. Renewable Agriculture and Food Systems, 2005, 20, 113-125.	0.8	12
2	20	Soil Amendments and Arbuscular Mycorrhiza Influenced the Growth and Heavy Metal Accumulation of Colosphospermum Mopane (Kirk Ex Benth.) In Heavy Metal Contaminated Soil. Soil and Sediment Contamination, 0, , 1-16.	1.1	1