Anna-Maria Pappa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6214391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Science Advances, 2018, 4, eaat0911.	10.3	183
2	Organic Transistor Arrays Integrated with Fingerâ€Powered Microfluidics for Multianalyte Saliva Testing. Advanced Healthcare Materials, 2016, 5, 2295-2302.	7.6	164
3	A fully inkjet-printed disposable glucose sensor on paper. Npj Flexible Electronics, 2018, 2, .	10.7	136
4	Lactate Detection in Tumor Cell Cultures Using Organic Transistor Circuits. Advanced Materials, 2017, 29, 1605744.	21.0	123
5	Electrophoretic drug delivery for seizure control. Science Advances, 2018, 4, eaau1291.	10.3	118
6	Organic Electronics for Point-of-Care Metabolite Monitoring. Trends in Biotechnology, 2018, 36, 45-59.	9.3	104
7	A Microfluidic Ion Pump for In Vivo Drug Delivery. Advanced Materials, 2017, 29, 1701217.	21.0	97
8	Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture. Advanced Biology, 2017, 1, 1700052.	3.0	89
9	Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring. Microsystems and Nanoengineering, 2017, 3, 17028.	7.0	79
10	Optical and Electronic Ion Channel Monitoring from Native Human Membranes. ACS Nano, 2020, 14, 12538-12545.	14.6	51
11	Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants. Beilstein Journal of Nanotechnology, 2015, 6, 254-262.	2.8	49
12	Organic Bioelectronics for <i>In Vitro</i> Systems. Chemical Reviews, 2022, 122, 4700-4790.	47.7	49
13	Polyelectrolyte Layer-by-Layer Assembly on Organic Electrochemical Transistors. ACS Applied Materials & Interfaces, 2017, 9, 10427-10434.	8.0	43
14	Biomimetic Electronic Devices for Measuring Bacterial Membrane Disruption. Advanced Materials, 2018, 30, e1803130.	21.0	43
15	Monitoring supported lipid bilayers with n-type organic electrochemical transistors. Materials Horizons, 2020, 7, 2348-2358.	12.2	42
16	Facile Generation of Biomimetic-Supported Lipid Bilayers on Conducting Polymer Surfaces for Membrane Biosensing. ACS Applied Materials & Interfaces, 2019, 11, 43799-43810.	8.0	41
17	Self-Assembly of Mammalian-Cell Membranes on Bioelectronic Devices with Functional Transmembrane Proteins. Langmuir, 2020, 36, 7325-7331.	3.5	36
18	Catalytically enhanced organic transistors for <i>in vitro</i> toxicology monitoring through hydrogel entrapment of enzymes. Journal of Applied Polymer Science, 2017, 134, .	2.6	35

Anna-Maria Pappa

#	Article	IF	CITATIONS
19	Nanomedicine for Atherosclerosis: Molecular Imaging and Treatment. Journal of Biomedical Nanotechnology, 2015, 11, 191-210.	1.1	34
20	High mobility transistors based on electrospray-printed small-molecule/polymer semiconducting blends. Journal of Materials Chemistry C, 2016, 4, 3499-3507.	5.5	30
21	Laser Patterning of Selfâ€Assembled Monolayers on PEDOT:PSS Films for Controlled Cell Adhesion. Advanced Materials Interfaces, 2017, 4, 1700191.	3.7	28
22	A highly sensitive molecular structural probe applied to in situ biosensing of metabolites using PEDOT:PSS. Biotechnology and Bioengineering, 2020, 117, 291-299.	3.3	26
23	Understanding electrochemical properties of supported lipid bilayers interfaced with organic electronic devices. Journal of Materials Chemistry C, 2022, 10, 8050-8060.	5.5	20
24	Electrospray-Processed Soluble Acenes toward the Realization of High-Performance Field-Effect Transistors. ACS Applied Materials & Interfaces, 2015, 7, 6496-6504.	8.0	19
25	Functional Infectious Nanoparticle Detector: Finding Viruses by Detecting Their Host Entry Functions Using Organic Bioelectronic Devices. ACS Nano, 2021, 15, 18142-18152.	14.6	19
26	Organic Transistors Incorporating Lipid Monolayers for Drug Interaction Studies. Advanced Materials Technologies, 2020, 5, 1900680.	5.8	17
27	Small molecule additive for low-power accumulation mode organic electrochemical transistors. Journal of Materials Chemistry C, 2020, 8, 8846-8855.	5.5	14
28	Biomembrane-based organic electronic devices for ligand–receptor binding studies. Analytical and Bioanalytical Chemistry, 2020, 412, 6265-6273.	3.7	14
29	Biomembranes in bioelectronic sensing. Trends in Biotechnology, 2022, 40, 107-123.	9.3	12
30	BMP-2 functionalized PEDOT:PSS-based OECTs for stem cell osteogenic differentiation monitoring. Flexible and Printed Electronics, 2019, 4, 044006.	2.7	11
31	Detection of Ganglioside-Specific Toxin Binding with Biomembrane-Based Bioelectronic Sensors. ACS Applied Bio Materials, 2021, 4, 7942-7950.	4.6	7
32	Nanoscale Features of Tunable Bacterial Outer Membrane Models Revealed by Correlative Microscopy. Langmuir, 2022, 38, 8773-8782.	3.5	7
33	Dual Mode Sensing of Binding and Blocking of Cancer Exosomes to Biomimetic Human Primary Stem Cell Surfaces. ACS Biomaterials Science and Engineering, 2021, , .	5.2	1