Yang Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6214280/publications.pdf Version: 2024-02-01

YANG HU

#	Article	IF	CITATIONS
1	Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway. Science, 2008, 322, 963-966.	6.0	1,455
2	PTEN/mTOR and axon regeneration. Experimental Neurology, 2010, 223, 45-50.	2.0	243
3	Differential Effects of Unfolded Protein Response Pathways on Axon Injury-Induced Death of Retinal Ganglion Cells. Neuron, 2012, 73, 445-452.	3.8	174
4	IFN-α Priming Results in a Gain of Proinflammatory Function by IL-10: Implications for Systemic Lupus Erythematosus Pathogenesis. Journal of Immunology, 2004, 172, 6476-6481.	0.4	124
5	The mTORC1 effectors S6K1 and 4E-BP play different roles in CNS axon regeneration. Nature Communications, 2014, 5, 5416.	5.8	102
6	Osteoarthritis and therapy. Arthritis and Rheumatism, 2006, 55, 493-500.	6.7	98
7	mTORC1 is necessary but mTORC2 and GSK3Î ² are inhibitory for AKT3-induced axon regeneration in the central nervous system. ELife, 2016, 5, e14908.	2.8	98
8	Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharmaceutica Sinica B, 2020, 10, 1347-1359.	5.7	94
9	Rescue of Glaucomatous Neurodegeneration by Differentially Modulating Neuronal Endoplasmic Reticulum Stress Molecules. Journal of Neuroscience, 2016, 36, 5891-5903.	1.7	72
10	SARA, a FYVE domain protein, affects Rab5-mediated endocytosis. Journal of Cell Science, 2002, 115, 4755-4763.	1.2	65
11	IFN-Î ³ and STAT1 Arrest Monocyte Migration and Modulate RAC/CDC42 Pathways. Journal of Immunology, 2008, 180, 8057-8065.	0.4	57
12	Costimulation of Chemokine Receptor Signaling by Matrix Metalloproteinase-9 Mediates Enhanced Migration of IFN-α Dendritic Cells. Journal of Immunology, 2006, 176, 6022-6033.	0.4	55
13	Neuroprotection by elF2α-CHOP inhibition and XBP-1 activation in EAE/optic neuritiss. Cell Death and Disease, 2017, 8, e2936-e2936.	2.7	55
14	Neuronal endoplasmic reticulum stress in axon injury and neurodegeneration. Annals of Neurology, 2013, 74, 768-777.	2.8	49
15	Silicone oil-induced ocular hypertension and glaucomatous neurodegeneration in mouse. ELife, 2019, 8, .	2.8	48
16	Apoptotic Cells Inhibit LPS-Induced Cytokine and Chemokine Production and IFN Responses in Macrophages. Human Immunology, 2007, 68, 156-164.	1.2	46
17	Mouse Î ³ -Synuclein Promoter-Mediated Gene Expression and Editing in Mammalian Retinal Ganglion Cells. Journal of Neuroscience, 2020, 40, 3896-3914.	1.7	46
18	AKT-dependent and -independent pathways mediate PTEN deletion-induced CNS axon regeneration. Cell Death and Disease, 2019, 10, 203.	2.7	44

Yang Hu

#	Article	IF	CITATIONS
19	Loss of OCRL increases ciliary PI(4,5)P2 in oculocerebrorenal syndrome of Lowe. Journal of Cell Science, 2017, 130, 3447-3454.	1.2	40
20	Longitudinal Morphological and Functional Assessment of RGC Neurodegeneration After Optic Nerve Crush in Mouse. Frontiers in Cellular Neuroscience, 2020, 14, 109.	1.8	39
21	Multiplexed genome regulation in vivo with hyper-efficient Cas12a. Nature Cell Biology, 2022, 24, 590-600.	4.6	39
22	Axon injury induced endoplasmic reticulum stress and neurodegeneration. Neural Regeneration Research, 2016, 11, 1557.	1.6	32
23	Regulation of STAT pathways and IRF1 during human dendritic cell maturation by TNF-α and PGE2. Journal of Leukocyte Biology, 2008, 84, 1353-1360.	1.5	28
24	Coordination of Necessary and Permissive Signals by PTEN Inhibition for CNS Axon Regeneration. Frontiers in Neuroscience, 2018, 12, 558.	1.4	26
25	NMNAT2 is downregulated in glaucomatous RGCs, and RGC-specific gene therapy rescues neurodegeneration and visual function. Molecular Therapy, 2022, 30, 1421-1431.	3.7	26
26	A Robust System for Production of Superabundant VP1 Recombinant AAV Vectors. Molecular Therapy - Methods and Clinical Development, 2017, 7, 146-156.	1.8	25
27	Increased ER Stress After Experimental Ischemic Optic Neuropathy and Improved RGC and Oligodendrocyte Survival After Treatment With Chemical Chaperon. , 2019, 60, 1953.		22
28	In vivo interactome profiling by enzyme atalyzed proximity labeling. Cell and Bioscience, 2021, 11, 27.	2.1	20
29	Coupled Control of Distal Axon Integrity and Somal Responses to Axonal Damage by the Palmitoyl Acyltransferase ZDHHC17. Cell Reports, 2020, 33, 108365.	2.9	19
30	Inhibition of GCK-IV kinases dissociates cell death and axon regeneration in CNS neurons. Proceedings of the United States of America, 2020, 117, 33597-33607.	3.3	19
31	Optogenetic stimulation of phosphoinositides reveals a critical role of primary cilia in eye pressure regulation. Science Advances, 2020, 6, eaay8699.	4.7	18
32	Posttranslational Modification of Sox11 Regulates RGC Survival and Axon Regeneration. ENeuro, 2021, 8, ENEURO.0358-20.2020.	0.9	18
33	A Reversible Silicon Oil-Induced Ocular Hypertension Model in Mice. Journal of Visualized Experiments, 2019, , .	0.2	16
34	Oculocerebrorenal syndrome of Lowe: Survey of ophthalmic presentations and management. European Journal of Ophthalmology, 2020, 30, 966-973.	0.7	16
35	Chronic mild and acute severe glaucomatous neurodegeneration derived from silicone oil-induced ocular hypertension. Scientific Reports, 2021, 11, 9052.	1.6	16
36	Defective INPP5E distribution in NPHP1â€related Senior–Loken syndrome. Molecular Genetics & Genomic Medicine, 2021, 9, e1566.	0.6	12

Yang Hu

#	Article	IF	CITATIONS
37	In vivo evaluation of retinal ganglion cells and optic nerve's integrity in large animals by multi-modality analysis. Experimental Eye Research, 2020, 197, 108117.	1.2	11
38	OCRL regulates lysosome positioning and mTORC1 activity through SSX2IPâ€mediated microtubule anchoring. EMBO Reports, 2021, 22, e52173.	2.0	11
39	Characterization of cells from patient-derived fibrovascular membranes in proliferative diabetic retinopathy. Molecular Vision, 2015, 21, 673-87.	1.1	10
40	Developmental distribution of primary cilia in the retinofugal visual pathway. Journal of Comparative Neurology, 2021, 529, 1442-1455.	0.9	9
41	Optogenetic Modulation of Intraocular Pressure in a Glucocorticoid-Induced Ocular Hypertension Mouse Model. Translational Vision Science and Technology, 2021, 10, 10.	1.1	8
42	Primary Cilia in Amacrine Cells in Retinal Development. , 2021, 62, 15.		8
43	Role of Translational Attenuation in Inherited Retinal Degeneration. , 2019, 60, 4849.		7
44	The necessary role of mTORC1 in central nervous system axon regeneration. Neural Regeneration Research, 2015, 10, 186.	1.6	6
45	Neuronal NMNAT2 Overexpression Does Not Achieve Significant Neuroprotection in Experimental Autoimmune Encephalomyelitis/Optic Neuritis. Frontiers in Cellular Neuroscience, 2021, 15, 754651.	1.8	6
46	Lab review: Molecular dissection of the signal transduction pathways associated with PTEN deletion-induced optic nerve regeneration. Restorative Neurology and Neuroscience, 2019, 37, 545-552.	0.4	5
47	Distribution of prototypical primary cilia markers in subtypes of retinal ganglion cells. Journal of Comparative Neurology, 2022, 530, 2176-2187.	0.9	4
48	Comparing silicone oil-induced ocular hypertension with other inducible glaucoma models in mice. Neural Regeneration Research, 2020, 15, 1652.	1.6	3
49	Optic chiasmatic potential by endoscopically implanted skull base microinvasive biosensor: a brain-machine interface approach for anterior visual pathway assessment. Theranostics, 2022, 12, 3273-3287.	4.6	2