LÃ;szlÃ³ Hegedűs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6214223/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective heterogeneous catalytic hydrogenation of nitriles to primary amines in liquid phase. Applied Catalysis A: General, 2005, 296, 209-215.	4.3	89
2	Microwave-Assisted Esterification of Phosphinic Acids. Current Organic Chemistry, 2011, 15, 1802-1810.	1.6	69
3	Asymmetric epoxidation of substituted chalcones and chalcone analogues catalyzed by α-d-glucose- and α-d-mannose-based crown ethers. Tetrahedron: Asymmetry, 2010, 21, 919-925.	1.8	46
4	Diastereoselective heterogeneous catalytic hydrogenation of N-heterocycles. Part I. Hydrogenation of pyridines. Applied Catalysis A: General, 2000, 201, 107-114.	4.3	45
5	Recent Achievements in the Hydrogenation of Nitriles Catalyzed by Transitional Metals. Current Organic Chemistry, 2019, 23, 1881-1900.	1.6	42
6	Selective heterogeneous catalytic hydrogenation of nitriles to primary amines in liquid phase. Applied Catalysis A: General, 2008, 349, 40-45.	4.3	38
7	Hydrogenation of pyrrole derivatives Part V. Poisoning effect of nitrogen on precious metal on carbon catalysts. Applied Catalysis A: General, 2002, 226, 319-322.	4.3	34
8	Asymmetric Michael Addition of Malonates to Enones Catalyzed by an α-d-Glucopyranoside-Based Crown Ether. Synlett, 2015, 26, 1847-1851.	1.8	33
9	Effect of carbon support properties on enantioselective hydrogenation of isophorone over palladium catalysts modified with (â^)-dihydroapovincaminic acid ethyl ester. Journal of Molecular Catalysis A, 2000, 153, 215-219.	4.8	32
10	An expedient total synthesis of ent-(â^')-7-deoxy-trans-dihydronarciclasine. Tetrahedron, 2009, 65, 8412-8417.	1.9	32
11	Hydrogenation of pyrrole derivatives I. Hydrogenations over palladium. Applied Catalysis A: General, 1996, 143, 309-316.	4.3	23
12	Hydrogenation of pyrrole derivatives. II. Hydrogenations over supported noble metal catalysts. Applied Catalysis A: General, 1996, 147, 407-414.	4.3	23
13	Cinchona based squaramide catalysed enantioselective Michael addition of α-nitrophosphonates to aryl acrylates: enantioselective synthesis of quaternary α-aminophosphonates. Tetrahedron: Asymmetry, 2013, 24, 1605-1614.	1.8	22
14	Selective Heterogeneous Catalytic Hydrogenation of Nitriles to Primary Amines. Periodica Polytechnica: Chemical Engineering, 2018, 62, .	1.1	21
15	Synthesis of the Spiro Derivatives of 1,2-Oxaphosphetes by [2+2] Cycloaddition of Cyclic 1-(2,4,6-Triisopropylphenyl)phosphine Oxides with Dimethyl Acetylenedicarboxylate. Tetrahedron, 2000, 56, 4823-4828.	1.9	20
16	The first enantioselective synthesis of α-aminophosphinates. Tetrahedron Letters, 2003, 44, 4603-4606.	1.4	20
17	Stereoselective total synthesis of (±)-7-deoxy-trans-dihydronarciclasine, a potent antineoplastic phenanthridone alkaloid. Tetrahedron Letters, 2009, 50, 2857-2859.	1.4	20
18	The First Enantioselective Total Synthesis of (â^')- <i>trans</i> -Dihydronarciclasine. Journal of Natural Products, 2017, 80, 1909-1917.	3.0	18

LÃiszlÃ³ Hegedűs

#	Article	IF	CITATIONS
19	Hydrogenation of pyrrole derivatives. Part IV. Hydrogenation of 1-methylpyrrole. Applied Catalysis A: General, 1997, 152, 143-151.	4.3	15
20	Diastereoselective and enantioselective heterogeneous catalytic hydrogenation of aminocinnamic acid derivatives. Journal of Molecular Catalysis A, 1999, 139, 239-244.	4.8	15
21	Treatments of Lignocellulosic Hydrolysates and Continuousâ€Flow Hydrogenation of Xylose to Xylitol. Chemical Engineering and Technology, 2018, 41, 496-503.	1.5	15
22	Green synthesis and cytotoxic activity of dibenzyl αâ€hydroxyphosphonates and αâ€hydroxyphosphonic acids. Heteroatom Chemistry, 2018, 29, .	0.7	14
23	Hydrogenation of pyrrole derivatives Part III. Hydrogenation of methyl 1-methyl-2-pyrroleacetate. Applied Catalysis A: General, 1997, 153, 133-139.	4.3	13
24	A new, aluminium oxy-hydrate supported NiAl skeleton catalyst. Applied Catalysis A: General, 2006, 308, 50-55.	4.3	13
25	Synthesis of ribo-hexopyranoside- and altrose-based azacrown ethers and their application in an asymmetric Michael addition. Carbohydrate Research, 2013, 365, 61-68.	2.3	13
26	An efficient stereoselective total synthesis of (±)-trans-dihydronarciclasine. Tetrahedron Letters, 2016, 57, 1544-1546.	1.4	11
27	Poisoning and Reuse of Supported Precious Metal Catalysts in the Hydrogenation of N-Heterocycles PartÂl: Ruthenium-Catalysed Hydrogenation of 1-Methylpyrrole. Catalysis Letters, 2018, 148, 1939-1950.	2.6	11
28	Selective hydrogenation of benzonitrile and its homologues to primary amines over platinum. Journal of Industrial and Engineering Chemistry, 2021, 101, 279-292.	5.8	11
29	Selective hydrogenation of exocyclic α,β-unsaturated ketones:. Journal of Molecular Catalysis A, 2000, 154, 237-241.	4.8	9
30	Hydrogenolysis of N-protected aminooxetanes over palladium: An efficient method for a one-step ring opening and debenzylation reaction. Journal of Molecular Catalysis A, 2011, 339, 32-36.	4.8	9
31	Hydrogenolysis of N- and O-protected hydroxyazetidines over palladium: Efficient and selective methods for ring opening and deprotecting reactions. Journal of Molecular Catalysis A, 2014, 395, 217-224.	4.8	9
32	Hydrogenolysis of O-protected hydroxyoxetanes over palladium: An efficient method for a one-step ring opening and detritylation reaction. Catalysis Communications, 2009, 10, 635-639.	3.3	8
33	Monodechlorination of6,6-Dichloro-3-phosphabicyclo[3.1.0]hexane 3-Oxides by CatalyticHydrogenationâ€. Journal of Chemical Research Synopses, 1997, , 290–29.	0.3	7
34	Novel 2-phosphabicyclo[2.2.2]oct-5-ene derivatives and their use in phosphinylations. Heteroatom Chemistry, 2004, 15, 97-106.	0.7	7
35	Microwave-assisted synthesis of <i>N,N</i> -bis(phosphinoylmethyl)amines and <i>N,N,N</i> -tris(phosphinoylmethyl)amines bearing different substituents on the phosphorus atoms. Beilstein Journal of Organic Chemistry, 2019, 15, 469-473.	2.2	7
36	Hydrogenation of pyrrole derivatives Part VI. An exception: catalytically unhydrogenable pyrroles. Applied Catalysis A: General, 2003, 245, 179-183.	4.3	6

LÃiszlÃ³ Hegedűs

#	Article	IF	CITATIONS
37	Hydrogenation of a 4-benzylpyridine derivative over supported precious metal catalysts. Applied Catalysis A: General, 2004, 269, 249-253.	4.3	6
38	Heterogeneous Catalytic Hydrogenation of 3-Phenylpropionitrile over Palladium on Carbon. ACS Omega, 2020, 5, 5487-5497.	3.5	6
39	Chiral Resolution of Racemic Cyclopropanecarboxylic Acids in Supercritical Carbon Dioxide. Chemical Engineering and Technology, 2014, 37, 1885-1890.	1.5	5
40	Synthesis and Application of New, Optically Active Compounds as Catalysts and Ligands in Enantioselective Reactions. Periodica Polytechnica: Chemical Engineering, 2015, 59, 38-50.	1.1	5
41	Highly Stereoselective Synthesis of trans-Dihydronarciclasine Analogues. Synthesis, 2018, 50, 625-643.	2.3	4
42	Stereoselective synthesis of trans-dihydronarciclasine derivatives containing a 1,4-benzodioxane moiety. Monatshefte Für Chemie, 2018, 149, 2265-2285.	1.8	4
43	(±)-trans-Dihydronarciclasine and (±)-trans-dihydrolycoricidine analogues modified in their ring A: Evaluation of their anticancer activity and a SAR study. European Journal of Medicinal Chemistry, 2019, 173, 76-89.	5.5	4
44	Tuning the chemoselectivity of the Pd-catalysed hydrogenation of pyridinecarbonitriles: an efficient and simple method for preparing pyridyl- or piperidylmethylamines. Catalysis Science and Technology, 2022, 12, 2634-2648.	4.1	4
45	Anomalous Products in the Halogenation Reactions of Vinca Alkaloids. Current Organic Chemistry, 2016, 20, 2639-2646.	1.6	3
46	Synthesis and Recovery of Pyridine- and Piperidine-based Camphorsulfonamide Organocatalysts Used for Michael Addition Reaction. Periodica Polytechnica: Chemical Engineering, 2018, 62, .	1.1	3
47	Synthesis and determination of pKa values of new enantiopure pyridino- and piperidino-18-crown-6 ethers. Arkivoc, 2016, 2016, 130-151.	0.5	3
48	A rational synthesis of trans-2-(3-phenylprop-1-yl)cyclohexylamino-2-oxazoline enantiomers. Tetrahedron: Asymmetry, 2008, 19, 773-778.	1.8	2
49	Application of supported lanthanum catalysts in the hydrogenation of nitriles. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 687.	1.7	2
50	Synthesis of Methyl 4,6-Di-O-ethyl-α-d-glucopyranoside-Based Azacrown Ethers and Their Effects in Asymmetric Reactions. Molecules, 2021, 26, 4668.	3.8	2
51	Synthesis of (S)-(+)-2-(N-benzylamino)butan-1-ol from its Schiff Base by Catalytic Hydrogenation over Palladium. Current Green Chemistry, 2015, 2, 312-318.	1.1	1
52	Resolution of aryl-H-phosphinates applied in the synthesis of P-stereogenic compounds including a BrÃ,nsted acid NMR solvating agent. Organic Chemistry Frontiers, 0, , .	4.5	1
53	Poisoning and Reuse of Supported Precious Metal Catalysts in the Hydrogenation of N-Heterocycles, Part II: Hydrogenation of 1-Methylpyrrole over Rhodium. Catalysts, 2022, 12, 730.	3.5	1
54	Hydrogenation of (±)-trans-2-arylnitrocyclohexane derivatives over palladium. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99, 85.	1.7	0

#	Article	IF	CITATIONS
55	Meet Our Frontier Section Editor. Current Organic Chemistry, 2019, 23, 745-745.	1.6	Ο
56	A tribute to Professor György Keglevich. Arkivoc, 2023, 2022, 1-13.	0.5	0