Doo Sung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6214085/publications.pdf

Version: 2024-02-01

242 papers

16,714 citations

67 h-index 120 g-index

246 all docs

246 docs citations

times ranked

246

16644 citing authors

#	Article	IF	CITATIONS
1	Biodegradable and Injectable Hydrogels in Biomedical Applications. Biomacromolecules, 2022, 23, 609-618.	5.4	32
2	Injectable Hydrogel Based on Protein-Polyester Microporous Network as an Implantable Niche for Active Cell Recruitment. Pharmaceutics, 2022, 14, 709.	4.5	11
3	A pH-activated charge convertible quantum dot as a novel nanocarrier for targeted protein delivery and real-time cancer cell imaging. Materials Science and Engineering C, 2021, 118, 111449.	7.3	9
4	Advances in biodegradable and injectable hydrogels for biomedical applications. Journal of Controlled Release, 2021, 330, 151-160.	9.9	133
5	Development of pH-Responsive Polymer Coating as an Alternative to Enzyme-Based Stem Cell Dissociation for Cell Therapy. Materials, 2021, 14, 491.	2.9	2
6	Alternative method for trypsin-based cell dissociation using poly (amino ester) coating and pH 6.0 PBS. Journal of Bioactive and Compatible Polymers, 2021, 36, 77-89.	2.1	2
7	Sulfonamide functionalized amino acidâ€based pH ―and temperatureâ€sensitive biodegradable injectable hydrogels: Synthesis, physicochemical characterization and in vivo degradation kinetics. Journal of Applied Polymer Science, 2021, 138, 50488.	2.6	7
8	Therapeutic effects of boronate ester cross-linked injectable hydrogels for the treatment of hepatocellular carcinoma. Biomaterials Science, 2021, 9, 7275-7286.	5.4	14
9	Functionalization of Magnetic Nanoparticles with Organic Ligands toward Biomedical Applications. Advanced NanoBiomed Research, 2021, 1, 2000043.	3. 6	12
10	Development of bioresorbable smart injectable hydrogels based on thermo-responsive copolymer integrated bovine serum albumin bioconjugates for accelerated healing of excisional wounds. Journal of Industrial and Engineering Chemistry, 2021, 96, 345-355.	5.8	22
11	Optimizing Active Tumor Targeting Biocompatible Polymers for Efficient Systemic Delivery of Adenovirus. Cells, 2021, 10, 1896.	4.1	4
12	CD44-Targeted and Enzyme-Responsive Photo-Cross-Linked Nanogels with Enhanced Stability for In Vivo Protein Delivery. Biomacromolecules, 2021, 22, 3590-3600.	5.4	24
13	Temperature and pH-responsive in situ hydrogels of gelatin derivatives to prevent the reoccurrence of brain tumor. Biomedicine and Pharmacotherapy, 2021, 143, 112144.	5. 6	11
14	Degradation-regulated architecture of injectable smart hydrogels enhances humoral immune response and potentiates antitumor activity in human lung carcinoma. Biomaterials, 2020, 230, 119599.	11.4	79
15	pH-Sensitive Polymeric Micelles as the Methotrexate Carrier for Targeting Rheumatoid Arthritis. Macromolecular Research, 2020, 28, 99-102.	2.4	7
16	Modularly engineered alginate bioconjugate hydrogel as biocompatible injectable scaffold for in situ biomineralization. Carbohydrate Polymers, 2020, 233, 115832.	10.2	48
17	Enzyme free cell detachment using pH-responsive poly(amino ester) for tissue regeneration. Journal of Industrial and Engineering Chemistry, 2020, 88, 373-381.	5.8	8
18	Dual activatable self-assembled nanotheranostics for bioimaging and photodynamic therapy. Journal of Controlled Release, 2020, 327, 129-139.	9.9	16

#	Article	IF	Citations
19	Recent Advances of pHâ€Induced Chargeâ€Convertible Polymerâ€Mediated Inorganic Nanoparticles for Biomedical Applications. Macromolecular Rapid Communications, 2020, 41, e2000106.	3.9	25
20	Albumin affibody-outfitted injectable gel enabling extended release of urate oxidase-albumin conjugates for hyperuricemia treatment. Journal of Controlled Release, 2020, 324, 532-544.	9.9	17
21	Intracellular delivery of cytochrome C using hypoxia-responsive polypeptide micelles for efficient cancer therapy. Materials Science and Engineering C, 2020, 114, 111069.	7.3	23
22	Highly potent intradermal vaccination by an array of dissolving microneedle polypeptide cocktails for cancer immunotherapy. Journal of Materials Chemistry B, 2020, 8, 1171-1181.	5.8	50
23	Microporous Organic Nanoparticles Anchoring CeO ₂ Materials: Reduced Toxicity and Efficient Reactive Oxygen Speciesâ€6cavenging for Regenerative Wound Healing. ChemNanoMat, 2020, 6, 1104-1110.	2.8	13
24	A novel injectable pH–temperature sensitive hydrogel containing chitosan–insulin electrosprayed nanosphere composite for an insulin delivery system in type I diabetes treatment. Biomaterials Science, 2020, 8, 3830-3843.	5 . 4	23
25	Multifunctional hyaluronic acid-mediated quantum dots for targeted intracellular protein delivery and real-time fluorescence imaging. Carbohydrate Polymers, 2019, 224, 115174.	10.2	35
26	Physically crosslinked injectable hydrogels for long-term delivery of oncolytic adenoviruses for cancer treatment. Biomaterials Science, 2019, 7, 4195-4207.	5.4	33
27	Green preparation of pH-responsive and dual targeting hyaluronic acid nanogels for efficient protein delivery. European Polymer Journal, 2019, 121, 109342.	5 . 4	23
28	Tunable Engineering of Heparinized Injectable Hydrogels for Affinityâ€Based Sustained Delivery of Bioactive Factors. Macromolecular Materials and Engineering, 2019, 304, 1900279.	3.6	10
29	Tumor acidity and CD44 dual targeting hyaluronic acid-coated gold nanorods for combined chemo- and photothermal cancer therapy. Carbohydrate Polymers, 2019, 226, 115281.	10.2	43
30	Charge-convertible polymers for improved tumor targeting and enhanced therapy. Biomaterials, 2019, 217, 119299.	11.4	49
31	Effective systemic siRNA delivery using dual-layer protected long-circulating nanohydrogel containing an inorganic core. Biomaterials Science, 2019, 7, 3297-3306.	5 . 4	3
32	Development of an Injectable Tissue Adhesive Hybrid Hydrogel for Growth Factor-Free Tissue Integration in Advanced Wound Regeneration. ACS Applied Bio Materials, 2019, 2, 2500-2510.	4.6	22
33	Smart pH-Responsive Nanocube-Controlled Delivery of DNA Vaccine and Chemotherapeutic Drugs for Chemoimmunotherapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13058-13068.	8.0	17
34	Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic therapy. Journal of Controlled Release, 2019, 301, 157-165.	9.9	46
35	Stimuli-responsive polymersomes for cancer therapy., 2019,, 413-438.		18
36	Hyaluronic Acid–Based Activatable Nanomaterials for Stimuliâ€Responsive Imaging and Therapeutics: Beyond CD44â€Mediated Drug Delivery. Advanced Materials, 2019, 31, e1803549.	21.0	188

#	Article	IF	Citations
37	Bioresorbable pH- and temperature-responsive injectable hydrogels-incorporating electrosprayed particles for the sustained release of insulin. Polymer Degradation and Stability, 2019, 162, 36-46.	5.8	27
38	Smart injectable biogels based on hyaluronic acid bioconjugates finely substituted with poly(β-amino) Tj ETQq(0 0 0 rgBT /	Overlock 10
39	Hyaluronic acid decorated pH- and temperature-induced injectable bioconjugates for sustained delivery of bioactive factors and highly efficient wound regeneration. New Journal of Chemistry, 2019, 43, 18979-18982.	2.8	13
40	Simultaneous delivery of DNA vaccine and hydrophobic adjuvant using reducible polyethylenimine-functionalized graphene oxide for activation of dendritic cells. Journal of Industrial and Engineering Chemistry, 2019, 80, 870-876.	5.8	16
41	Triple-, Double-, and Single-Shelled Hollow Spheres of Sulfonated Microporous Organic Network as Drug Delivery Materials. Chemistry of Materials, 2019, 31, 300-304.	6.7	42
42	Amino acid functionalized pH- and temperature-sensitive biodegradable injectable hydrogels: synthesis, physicochemical characterization and in vivo degradation kinetics. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 891-900.	3.4	2
43	Modularly engineered injectable hybrid hydrogels based on protein-polymer network as potent immunologic adjuvant in vivo. Biomaterials, 2019, 195, 100-110.	11.4	45
44	Polyamide-based pH and temperature-responsive hydrogels: Synthesis and physicochemical characterization. Journal of Polymer Research, 2019, 26, 1.	2.4	9
45	One-Step Preparation of pH-Responsive Polymeric Nanogels as Intelligent Drug Delivery Systems for Tumor Therapy. Biomacromolecules, 2018, 19, 2062-2070.	5.4	67
46	A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins <i>in vivo</i> . Biomaterials Science, 2018, 6, 661-671.	5.4	50
47	Folate decorated hollow spheres of microporous organic networks as drug delivery materials. Chemical Communications, 2018, 54, 3652-3655.	4.1	48
48	Coâ€Delivery of Drugs and Genes Using Polymeric Nanoparticles for Synergistic Cancer Therapeutic Effects. Advanced Healthcare Materials, 2018, 7, 1700886.	7.6	96
49	Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses. Journal of Controlled Release, 2018, 269, 225-234.	9.9	90
50	Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials, 2018, 185, 13-24.	11.4	142
51	Multifunctional and Stimuliâ€Responsive Magnetic Nanoparticleâ€Based Delivery Systems for Biomedical Applications. Advanced Therapeutics, 2018, 1, 1800011.	3.2	71
52	Self-assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imaging. Drug Delivery, 2018, 25, 1570-1578.	5.7	28
53	Bioinspired pH- and Temperature-Responsive Injectable Adhesive Hydrogels with Polyplexes Promotes Skin Wound Healing. Biomacromolecules, 2018, 19, 3536-3548.	5.4	89
54	Ultrasmall gold nanosatellite-bearing transformable hybrid nanoparticles for deep tumor penetration. Acta Biomaterialia, 2018, 79, 294-305.	8.3	20

#	Article	IF	CITATIONS
55	Enhanced Cancer Vaccination by <i>In Situ</i> Nanomicelle-Generating Dissolving Microneedles. ACS Nano, 2018, 12, 9702-9713.	14.6	127
56	Polymer ligand-assisted fabrication of multifunctional and redox-responsive self-assembled magnetic nanoclusters for bimodal imaging and cancer treatment. Journal of Materials Chemistry B, 2018, 6, 5562-5569.	5.8	14
57	AgNP and rhEGF-incorporating synergistic polyurethane foam as a dressing material for scar-free healing of diabetic wounds. RSC Advances, 2017, 7, 13714-13725.	3.6	33
58	Bioengineered robust hybrid hydrogels enrich the stability and efficacy of biological drugs. Journal of Controlled Release, 2017, 267, 119-132.	9.9	38
59	Xenotransplantation of layer-by-layer encapsulated non-human primate islets with a specified immunosuppressive drug protocol. Journal of Controlled Release, 2017, 258, 10-21.	9.9	33
60	CdSe@ZnS/ZnS quantum dots loaded in polymeric micelles as a pH-triggerable targeting fluorescence imaging probe for detecting cerebral ischemic area. Colloids and Surfaces B: Biointerfaces, 2017, 155, 497-506.	5.0	25
61	Chitosan-based composite hydrogels for biomedical applications. Macromolecular Research, 2017, 25, 480-488.	2.4	63
62	Multifunctional and Redox-Responsive Self-Assembled Magnetic Nanovectors for Protein Delivery and Dual-Modal Imaging. ACS Applied Materials & Interfaces, 2017, 9, 19184-19192.	8.0	49
63	Bioresorbable polypeptide-based comb-polymers efficiently improves the stability and pharmacokinetics of proteins in vivo. Biomaterials Science, 2017, 5, 837-848.	5.4	45
64	Temperature and pH-sensitive injectable hydrogels based on poly(sulfamethazine carbonate urethane) for sustained delivery of cationic proteins. Polymer, 2017, 109, 38-48.	3.8	39
65	Engineering highly swellable dual-responsive protein-based injectable hydrogels: the effects of molecular structure and composition in vivo. Biomaterials Science, 2017, 5, 2285-2294.	5.4	17
66	Colloidal Mesoporous Silica Nanoparticles as Strong Adhesives for Hydrogels and Biological Tissues. ACS Applied Materials & Earny; Interfaces, 2017, 9, 31469-31477.	8.0	49
67	Injectable hydrogel-incorporated cancer cell-specific cisplatin releasing nanogels for targeted drug delivery. Journal of Materials Chemistry B, 2017, 5, 7140-7152.	5.8	61
68	Injectable hydrogels for sustained release of therapeutic agents. Journal of Controlled Release, 2017, 267, 57-66.	9.9	166
69	Inverse Photonic Glasses by Packing Bidisperse Hollow Microspheres with Uniform Cores. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24155-24160.	8.0	48
70	Multifunctional Polymer Ligand Interface CdZnSeS/ZnS Quantum Dot/Cy3-Labeled Protein Pairs as Sensitive FRET Sensors. ACS Applied Materials & Sensitive FRET Sensors. ACS Applied Materials & Sensitive FRET Sensors.	8.0	39
71	Polymer-Based and pH-Sensitive Nanobiosensors for Imaging and Therapy of Acidic Pathological Areas. Pharmaceutical Research, 2016, 33, 2358-2372.	3.5	18
72	Sulfamethazine-based pH-sensitive hydrogels with potential application for transcatheter arterial chemoembolization therapy. Acta Biomaterialia, 2016, 41, 253-263.	8.3	55

#	Article	IF	CITATIONS
73	Pancreatic cancer therapy using an injectable nanobiohybrid hydrogel. RSC Advances, 2016, 6, 41644-41655.	3.6	49
74	Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives. Chemical Communications, 2016, 52, 8492-8500.	4.1	125
75	A novel sulfamethazine-based pH-sensitive copolymer for injectable radiopaque embolic hydrogels with potential application in hepatocellular carcinoma therapy. Polymer Chemistry, 2016, 7, 5805-5818.	3.9	29
76	Long-Circulating Au-TiO ₂ Nanocomposite as a Sonosensitizer for ROS-Mediated Eradication of Cancer. Nano Letters, 2016, 16, 6257-6264.	9.1	328
77	pH-Sensitive sulfamethazine-based hydrogels as potential embolic agents for transcatheter vascular embolization. Journal of Materials Chemistry B, 2016, 4, 6524-6533.	5.8	33
78	Binding interactions between lysozyme and injectable hydrogels derived from albumin-pH/thermo responsive poly(amino urethane) conjugates in aqueous solution. Colloids and Surfaces B: Biointerfaces, 2016, 146, 558-566.	5.0	3
79	Stimuliâ€Sensitive Injectable Hydrogels Based on Polysaccharides and Their Biomedical Applications. Macromolecular Rapid Communications, 2016, 37, 1881-1896.	3.9	129
80	Gold-Nanoclustered Hyaluronan Nano-Assemblies for Photothermally Maneuvered Photodynamic Tumor Ablation. ACS Nano, 2016, 10, 10858-10868.	14.6	96
81	Poly(amino carbonate urethane)-based biodegradable, temperature and pH-sensitive injectable hydrogels for sustained human growth hormone delivery. Scientific Reports, 2016, 6, 29978.	3.3	65
82	Intraarterial gelation of injectable cationic pH/temperature-sensitive radiopaque embolic hydrogels in a rabbit hepatic tumor model and their potential application for liver cancer treatment. RSC Advances, 2016, 6, 47687-47697.	3.6	21
83	Nanoparticles based on quantum dots and a luminol derivative: implications for in vivo imaging of hydrogen peroxide by chemiluminescence resonance energy transfer. Chemical Communications, 2016, 52, 4132-4135.	4.1	64
84	Construction of redox/pH dual stimuli-responsive PEGylated polymeric micelles for intracellular doxorubicin delivery in liver cancer. Polymer Chemistry, 2016, 7, 1813-1825.	3.9	58
85	pH-Responsive biodegradable polymeric micelles with anchors to interface magnetic nanoparticles for MR imaging in detection of cerebral ischemic area. Nanoscale, 2016, 8, 12588-12598.	5.6	66
86	Poly(ethylene glycol)-b-poly(lysine) copolymer bearing nitroaromatics for hypoxia-sensitive drug delivery. Acta Biomaterialia, 2016, 29, 261-270.	8.3	82
87	Stimuli-responsive polymersomes for cancer therapy. Biomaterials Science, 2016, 4, 55-69.	5.4	122
88	Redox- and pH-Sensitive Polymeric Micelles Based on Poly(β-amino ester)-Grafted Disulfide Methylene Oxide Poly(ethylene glycol) for Anticancer Drug Delivery. Macromolecules, 2015, 48, 4046-4054.	4.8	82
89	Enhancing neurogenesis and angiogenesis with target delivery of stromal cell derived factor- $\hat{l}\pm$ using a dual ionic pH-sensitive copolymer. Biomaterials, 2015, 61, 115-125.	11.4	85
90	Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel. Nanoscale, 2015, 7, 3043-3054.	5.6	53

#	Article	IF	Citations
91	Bioreducible core-crosslinked hyaluronic acid micelle for targeted cancer therapy. Journal of Controlled Release, 2015, 200, 158-166.	9.9	101
92	Tuning Surface Charge and PEGylation of Biocompatible Polymers for Efficient Delivery of Nucleic Acid or Adenoviral Vector. Bioconjugate Chemistry, 2015, 26, 1818-1829.	3.6	19
93	Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. European Polymer Journal, 2015, 72, 602-619.	5.4	184
94	Gold-installed biostable nanocomplexes for tumor-targeted siRNA delivery in vivo. Chemical Communications, 2015, 51, 16656-16659.	4.1	15
95	Preclinical investigation for developing injectable fiducial markers using a mixture of BaSO ₄ and biodegradable polymer for proton therapy. Medical Physics, 2015, 42, 2626-2637.	3.0	7
96	Heparin-based temperature-sensitive injectable hydrogels for protein delivery. Journal of Materials Chemistry B, 2015, 3, 8892-8901.	5.8	59
97	Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: Synthesis, characterization, in vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces, 2015, 135, 699-706.	5.0	52
98	Evaluation of AgHAP-containing polyurethane foam dressing for wound healing: synthesis, characterization, in vitro and in vivo studies. Journal of Materials Chemistry B, 2015, 3, 7752-7763.	5.8	48
99	Clinical Outcomes of Semiconstrained Total Elbow Arthroplasty in Patients Who Were Forty Years of Age or Younger. Journal of Bone and Joint Surgery - Series A, 2015, 97, 1781-1791.	3.0	25
100	Highly cited research articles in Journal of Controlled Release: Commentaries and perspectives by authors. Journal of Controlled Release, 2014, 190, 29-74.	9.9	394
101	Nanocarriers: Bioreducible Carboxymethyl Dextran Nanoparticles for Tumor-Targeted Drug Delivery (Adv. Healthcare Mater. 11/2014). Advanced Healthcare Materials, 2014, 3, 1828-1828.	7.6	0
102	Injectable hydrogels based on poly(amino urethane) conjugated bovine serum albumin. Materials Letters, 2014, 124, 105-109.	2.6	11
103	Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials, 2014, 35, 1735-1743.	11.4	296
104	Biostable and bioreducible polymersomes for intracellular delivery of doxorubicin. Polymer Chemistry, 2014, 5, 4627-4634.	3.9	26
105	Bioreducible Carboxymethyl Dextran Nanoparticles for Tumorâ€Targeted Drug Delivery. Advanced Healthcare Materials, 2014, 3, 1829-1838.	7.6	91
106	Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa–hyaluronic acid conjugate. Journal of Controlled Release, 2014, 192, 122-130.	9.9	115
107	In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. Journal of Controlled Release, 2014, 193, 214-227.	9.9	270
108	Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine. Journal of Controlled Release, 2014, 179, 11-17.	9.9	83

#	Article	IF	Citations
109	A stress-responsive Escherichia coli protein, CysQ is a highly effective solubility enhancer for aggregation-prone heterologous proteins. Protein Expression and Purification, 2014, 101, 91-98.	1.3	4
110	Synthesis of Mycoplasma arginine deiminase in E. coli using stress-responsive proteins. Enzyme and Microbial Technology, 2014, 63, 46-49.	3.2	10
111	Signal enhancement strategy for a micro-arrayed polydiacetylene (PDA) immunosensor using enzyme-catalyzed precipitation. Biosensors and Bioelectronics, 2014, 61, 314-320.	10.1	21
112	Controlled Release., 2014,, 1-12.		3
113	Synthesis and characterization of pH-Responsive Poly(2-hydroxyethyl aspartamide)-g-Poly(β-amino ester) graft copolymer micelles as potential drug carriers. Macromolecular Research, 2013, 21, 400-405.	2.4	3
114	A Biodegradable Polymersome with pH-Tuning On-Off Membrane Based on Poly(\hat{l}^2 -amino ester) for Drug Delivery. Macromolecular Bioscience, 2013, 13, 946-953.	4.1	17
115	pH-sensitive polymeric micelles based on amphiphilic polypeptide as smart drug carriers. Journal of Polymer Science Part A, 2013, 51, 4175-4182.	2.3	22
116	Bioreducible hyaluronic acid conjugates as siRNA carrier for tumor targeting. Journal of Controlled Release, 2013, 172, 653-661.	9.9	60
117	pH-triggered unimer/vesicle-transformable and biodegradable polymersomes based on PEG-b-PCL–grafted poly(β-amino ester) for anti-cancer drug delivery. Polymer, 2013, 54, 102-110.	3.8	27
118	Environmental pH-sensitive polymeric micelles for cancer diagnosis and targeted therapy. Journal of Controlled Release, 2013, 169, 180-184.	9.9	175
119	Stimulusâ€Sensitive Polymeric Nanoparticles and Their Applications as Drug and Gene Carriers. Advanced Healthcare Materials, 2013, 2, 388-417.	7.6	133
120	Therapeutic efficacy of a systemically delivered oncolytic adenovirus – Biodegradable polymer complex. Biomaterials, 2013, 34, 4622-4631.	11.4	40
121	Albumin-Conjugated pH/Thermo Responsive Poly(amino urethane) Multiblock Copolymer as an Injectable Hydrogel for Protein Delivery. Macromolecular Bioscience, 2013, 13, 1195-1203.	4.1	24
122	Enhancement of Radiotherapeutic Efficacy by Paclitaxel-Loaded pH-Sensitive Block Copolymer Micelles. Journal of Nanomaterials, 2012, 2012, 1-5.	2.7	1
123	Synthesis, Characteristics and Potential Application of Poly(\hat{l}^2 -Amino Ester Urethane)-Based Multiblock Co-Polymers as an Injectable, Biodegradable and pH/Temperature-Sensitive Hydrogel System. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1091-1106.	3.5	26
124	Dually cationic and anionic pH/temperature-sensitive injectable hydrogels and potential application as a protein carrier. Chemical Communications, 2012, 48, 10951.	4.1	38
125	Bioreducible polymersomes for intracellular dual-drug delivery. Journal of Materials Chemistry, 2012, 22, 22028.	6.7	79
126	The use of pH-sensitive positively charged polymeric micelles for protein delivery. Biomaterials, 2012, 33, 9157-9164.	11.4	95

#	Article	IF	CITATIONS
127	Synthesis and characterization of poly(amino urea urethane)-based block copolymer and its potential application as injectable pH/temperature-sensitive hydrogel for protein carrier. Polymer, 2012, 53, 4069-4075.	3.8	27
128	Controlling the properties of poly(amino ester urethane)–poly(ethylene glycol)–poly(amino ester) Tj ETQq0 0 290, 1077-1086.	0 rgBT /0 [.] 2.1	verlock 10 ⁻ 20
129	Synthesis and evaluation of biotin-conjugated pH-responsive polymeric micelles as drug carriers. International Journal of Pharmaceutics, 2012, 427, 435-442.	5.2	75
130	Controlled release of human growth hormone from a biodegradable pH/temperature-sensitive hydrogel system. Soft Matter, 2011, 7, 8984.	2.7	60
131	Biodegradable oligo(amidoamine/ \hat{l}^2 -amino ester) hydrogels for controlled insulin delivery. Soft Matter, 2011, 7, 2994.	2.7	45
132	Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications. Macromolecules, 2011, 44, 6629-6636.	4.8	221
133	Sustained delivery of doxorubicin using biodegradable pH/temperature-sensitive poly(ethylene) Tj ETQq1 1 0.7843	14 rgBT /(2.7	Oyerlock 10
134	pH-responsive polymeric micelle based on PEG-poly(\hat{l}^2 -amino ester)/(amido amine) as intelligent vehicle for magnetic resonance imaging in detection of cerebral ischemic area. Journal of Controlled Release, 2011, 155, 11-17.	9.9	106
135	Biodegradable star-shaped poly(ethylene glycol)-poly(\hat{l}^2 -amino ester) cationic pH/temperature-sensitive copolymer hydrogels. Colloid and Polymer Science, 2011, 289, 301-308.	2.1	27
136	pHâ€Sensitive Pentablock Copolymer Nanocapsules as Nontoxic and Efficient Gene Carriers. Macromolecular Bioscience, 2011, 11, 789-796.	4.1	10
137	Evaluation of pHâ€Sensitive Poly(<i>i²</i> â€amino ester)â€ <i>graft</i> â€poly(ethylene glycol) and its Usefulness as a pHâ€Sensor and Protein Carrier. Macromolecular Bioscience, 2011, 11, 946-951.	4.1	11
138	Enzyme-mediated cross-linking of Pluronic copolymer micelles for injectable and in situ forming hydrogels. Acta Biomaterialia, 2011, 7, 1468-1476.	8.3	68
139	Biodegradable pH/temperature-sensitive oligo (\hat{l}^2 -amino ester urethane) hydrogels for controlled release of doxorubicin. Acta Biomaterialia, 2011, 7, 3123-3130.	8.3	59
140	Synthesis and characterization of an amphiphilic graft polymer and its potential as a pH-sensitive drug carrier. Polymer, 2011, 52, 3304-3310.	3.8	29
141	Controlling the degradation of pH/temperature-sensitive injectable hydrogels based on poly(\hat{l}^2 -amino) Tj ETQq $1\ 1$	0 _{.78} 4314 2.4	rggT /Over
142	Bioadhesive PAA-PEG-PAA triblock copolymer hydrogels for drug delivery in oral cavity. Macromolecular Research, 2010, 18, 284-288.	2.4	28
143	Picolyamine based pH/temperature sensitive hydrogels. Macromolecular Research, 2010, 18, 589-595.	2.4	14
144	Biodegradable pH- and temperature-sensitive multiblock copolymer hydrogels based on poly(amino-ester urethane)s. Macromolecular Research, 2010, 18, 974-980.	2.4	24

#	Article	IF	Citations
145	pH- and temperature-sensitive PCL-grafted poly(\hat{l}^2 -amino ester)-poly(ethylene glycol)-poly(\hat{l}^2 -amino ester) copolymer hydrogels. Macromolecular Research, 2010, 18, 1096-1102.	2.4	14
146	Tumoral acidic pH-responsive MPEG-poly(\hat{l}^2 -amino ester) polymeric micelles for cancer targeting therapy. Journal of Controlled Release, 2010, 144, 259-266.	9.9	263
147	<i>In vitro</i> degradability and stability of hydrophobically modified pHâ€sensitive micelles using MPEGâ€grafted poly(βâ€amino ester) for efficient encapsulation of paclitaxel. Journal of Applied Polymer Science, 2010, 118, 3431-3438.	2.6	13
148	Injectable Biodegradable Hydrogels. Macromolecular Bioscience, 2010, 10, 563-579.	4.1	396
149	pH/temperature-sensitive 4-arm poly(ethylene glycol)-poly(amino urethane) copolymer hydrogels. Polymer, 2010, 51, 3843-3850.	3 . 8	36
150	pHâ€Sensitive Nanoflash for Tumoral Acidic pH Imaging in Live Animals. Small, 2010, 6, 2539-2544.	10.0	53
151	Magnetiteâ€Nanoparticleâ€Encapsulated pHâ€Responsive Polymeric Micelle as an MRI Probe for Detecting Acidic Pathologic Areas. Small, 2010, 6, 1201-1204.	10.0	95
152	Tumor-Targeting Peptide Conjugated pH-Responsive Micelles as a Potential Drug Carrier for Cancer Therapy. Bioconjugate Chemistry, 2010, 21, 208-213.	3 . 6	214
153	Biodegradable and pH-sensitive polymersome with tuning permeable membrane for drug delivery carrier. Chemical Communications, 2010, 46, 4481.	4.1	81
154	In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chemical Communications, 2010, 46, 5668.	4.1	173
155	An acidic pH-triggered polymeric micelle for dual-modality MR and optical imaging. Journal of Materials Chemistry, 2010, 20, 5454.	6.7	38
156	Oligo(amidoamine)s hydrogels with tunable gel properties. Chemical Communications, 2010, 46, 3583.	4.1	32
157	In-Situ Gelling Stimuli-Sensitive PEG-Based Amphiphilic Copolymer Hydrogels. , 2010, , 123-146.		4
158	Controlled release of insulin from pH/temperature-sensitive injectable pentablock copolymer hydrogel. Journal of Controlled Release, 2009, 137, 20-24.	9.9	142
159	MPEG-b-poly(amino urethane) amphiphilic block copolymers and their pH-Dependent micellization behavior. Macromolecular Research, 2009, 17, 58-61.	2.4	2
160	Formation of poly(ethylene glycol)-poly($\hat{l}\mu$ -caprolactone) Nanoparticles via Nanoprecipitation. Macromolecular Research, 2009, 17, 72-78.	2.4	25
161	Evaluation of the anti-tumor effects of paclitaxel-encapsulated pH-sensitive micelles. Macromolecular Research, 2009, 17, 99-103.	2.4	13
162	Synthesis and characterization of poly(l-glutamic acid)-block-poly(l-phenylalanine). Polymer, 2009, 50, 2252-2257.	3.8	33

#	Article	IF	CITATIONS
163	Molecular design of novel pH/temperature-sensitive hydrogels. Polymer, 2009, 50, 2565-2571.	3.8	47
164	pH-sensitive and bioadhesive poly(β-amino ester)–poly(ethylene glycol)–poly(β-amino ester) triblock copolymer hydrogels with potential for drug delivery in oral mucosal surfaces. Polymer, 2009, 50, 5205-5210.	3.8	68
165	Injectable <i>In Situ</i> i>â€"Forming pH/Thermo-Sensitive Hydrogel for Bone Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 923-933.	3.1	124
166	Injectable Poly(amidoamine)-poly(ethylene glycol)-poly(amidoamine) Triblock Copolymer Hydrogel with Dual Sensitivities: pH and Temperature. Biomacromolecules, 2009, 10, 728-731.	5.4	72
167	Novel pH/Temperature-Sensitive Hydrogels Based on Poly(\hat{l}^2 -Amino Ester) for Controlled Protein Delivery. , 2009, , 157-177.		O
168	Micelle formation and sol–gel transition behavior of combâ€like amphiphilic poly((PLGAâ€∢i>bà€PEG)MA) copolymers. Journal of Polymer Science Part A, 2008, 46, 1954-1963.	2.3	17
169	RAFT synthesis of amphiphilic (Aâ€∢i>ranàâ€B)â€∢i>bàê€C diblock copolymers with tunable pHâ€sensitivity. Journal of Polymer Science Part A, 2008, 46, 3740-3748.	`2 . 3	26
170	Lower critical solution temperature behavior of amphiphilic copolymers based on polyaspartamide derivatives. Journal of Applied Polymer Science, 2008, 107, 509-513.	2.6	9
171	In situ gelling aqueous solutions of pH- and temperature-sensitive poly(ester amino urethane)s. Polymer, 2008, 49, 4620-4625.	3.8	46
172	Surface modification of poly(l-lactide) electrospun fibers with nanocrystal hydroxyapatite for engineered scaffold applications. Materials Science and Engineering C, 2008, 28, 1242-1249.	7.3	47
173	In vitro Release and in vivo Anti-tumor Efficacy of Doxorubicin from Biodegradable Temperature-sensitive Star-shaped PLGA-PEG Block Copolymer Hydrogel. Polymer Journal, 2008, 40, 171-176.	2.7	33
174	pH- and temperature-sensitive multiblock copolymer hydrogels composed of poly(ethylene glycol) and poly(amino urethane). Polymer, 2008, 49, 4968-4973.	3.8	83
175	In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. Journal of Controlled Release, 2008, 127, 189-207.	9.9	760
176	Preparation and properties of modified PHEMA hydrogel with sulfonated PEG graft. Journal of Applied Polymer Science, 2007, 104, 2484-2489.	2.6	16
177	pH- and temperature-sensitive, injectable, biodegradable block copolymer hydrogels as carriers for paclitaxel. International Journal of Pharmaceutics, 2007, 331, 11-18.	5.2	127
178	Synthesis and pH-dependent micellization of 2-(diisopropylamino)ethyl methacrylate based amphiphilic diblock copolymers via RAFT polymerization. Polymer, 2007, 48, 3437-3443.	3.8	52
179	Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly(\hat{l}^2 -amino ester) block copolymer micelles for cancer therapy. Journal of Controlled Release, 2007, 123, 109-115.	9.9	281
180	Synthesis and characterization of MPEG-b-PDPA amphiphilic block copolymer via atom transfer radical polymerization and its pH-dependent micellar behavior. Macromolecular Research, 2007, 15, 385-391.	2.4	21

#	Article	IF	CITATIONS
181	pH-sensitivity control of PEG-poly (\hat{l}^2 -amino ester) block copolymer micelle. Macromolecular Research, 2007, 15, 437-442.	2.4	44
182	Synthesis and characterization of pH/temperature-sensitive block copolymers via atom transfer radical polymerization. Polymer, 2007, 48, 758-762.	3.8	45
183	Protocol for Thermally Induced Phase Separation (TIPS). Manuals in Biomedical Research, 2007, , 101-110.	0.0	1
184	Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(Îμ-caprolactone-co-lactide)–poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 61	7 Itl4 glyc	ol)a3€ "poly(Î∣
185	Sulfonamide-Based pH- and Temperature-Sensitive Biodegradable Block Copolymer Hydrogels. Biomacromolecules, 2006, 7, 1935-1941.	5.4	119
186	Synthesis of lactide from oligomeric PLA: Effects of temperature, pressure, and catalyst. Macromolecular Research, 2006, 14, 510-516.	2.4	83
187	Novel pH and temperature-sensitive block copolymers: Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf	50 502 To	l (glycol)-b-p
188	pH/temperature sensitive poly(ethylene glycol)-based biodegradable polyester block copolymer hydrogels. Polymer, 2006, 47, 7918-7926.	3.8	60
189	Gas foamed open porous biodegradable polymeric microspheres. Biomaterials, 2006, 27, 152-159.	11.4	319
190	Novel pH Sensitive Block Copolymer Micelles for Solvent Free Drug Loading. Macromolecular Bioscience, 2006, 6, 179-186.	4.1	68
191	pH-Responsive PEG-Poly(\hat{l}^2 -amino ester) Block Copolymer Micelles with a Sharp Transition. Macromolecular Rapid Communications, 2006, 27, 447-451.	3.9	98
192	pH-induced micellization of biodegradable block copolymers containing sulfamethazine. Macromolecular Research, 2005, 13, 344-351.	2.4	7
193	pH-induced micellization of sulfamethazine-coupled MPEG-PCLA block copolymer. Macromolecular Research, 2005, 13, 352-355.	2.4	2
194	Synthesis and pH-Dependent micellization of a novel block copolymer containing s-Triazine linkage. Macromolecular Research, 2005, 13, 373-384.	2.4	2
195	Synthesis and pH-dependent micellization of sulfonamide-modified diblock copolymer. Macromolecular Research, 2005, 13, 467-476.	2.4	4
196	Reaction kinetics for the synthesis of oligomeric poly(lactic acid). Macromolecular Research, 2005, 13, 68-72.	2.4	22
197	Modulation of poly(\hat{l}^2 -amino ester) pH-sensitive polymers by molecular weight control. Macromolecular Research, 2005, 13, 147-151.	2.4	39
198	Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials, 2005, 26, 3165-3172.	11.4	273

#	Article	IF	Citations
199	A facile preparation of highly interconnected macroporous PLGA scaffolds by liquid–liquid phase separation II. Polymer, 2005, 46, 3801-3808.	3.8	50
200	Novel Injectable pH and Temperature Sensitive Block Copolymer Hydrogel. Biomacromolecules, 2005, 6, 2930-2934.	5.4	223
201	Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Biomaterials, 2004, 25, 5613-5620.	11.4	129
202	Effect of PEGâ€"PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation. Biomaterials, 2004, 25, 2319-2329.	11.4	143
203	Photo-crosslinkable, thermo-sensitive and biodegradable Pluronic hydrogels for sustained release of protein. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1571-1583.	3.5	53
204	pH- and temperature-sensitive bifunctional hydrogels of N-isopropylacrylamide and sulfadimethoxine monomer. Macromolecular Research, 2003,11,189-193.	2.4	11
205	Characterization of poly(ethylene oxide)-b-poly(L-lactide) block copolymer by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Macromolecular Research, 2003, 11, 341-346.	2.4	15
206	Thermal and mechanical characteristics of poly(l-lactic acid) nanocomposite scaffold. Biomaterials, 2003, 24, 2773-2778.	11.4	245
207	A facile preparation of highly interconnected macroporous poly(d,l-lactic acid-co-glycolic acid) (PLGA) scaffolds by liquid–liquid phase separation of a PLGA–dioxane–water ternary system. Polymer, 2003, 44, 1911-1920.	3.8	111
208	HIGHLY TRANSPARENT AND THERMALLY STABLE PHOTOREACTIVE POLYMER. Molecular Crystals and Liquid Crystals, 2003, 406, 77-83.	0.9	2
209	Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid-liquid phase separation of a PLLA-dioxane-water system. Journal of Biomedical Materials Research Part B, 2002, 63, 161-167.	3.1	142
210	Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. Journal of Biomedical Materials Research Part B, 2002, 61, 188-196.	3.1	143
211	Thermoresponsive phase transitions of PLA-block-PEO-block-PLA triblock stereo-copolymers in aqueous solution. Macromolecular Research, 2002, 10, 359-364.	2.4	32
212	Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid–liquid phase separation of a PLLA–dioxane–water system. Journal of Biomedical Materials Research Part B, 2002, 63, 161.	3.1	3
213	A novel thermosensitive soluble polypyrrole composite. Synthetic Metals, 2001, 124, 301-306.	3.9	10
214	Drug-releasing kinetics of MPEG/PLLA block copolymer micelles with different PLLA block lengths. Journal of Applied Polymer Science, 2001, 82, 2599-2605.	2.6	21
215	Preparation of a Macroporous Poly(L-lactide) Scaffold by Liquid-Liquid Phase Separation of a PLLA/1,4-Dioxane/Water Ternary System in the Presence of NaCl. Macromolecular Rapid Communications, 2001, 22, 1053-1057.	3.9	31
216	Thermoreversible gelation of biodegradable poly(ε-caprolactone) and poly(ethylene glycol) multiblock copolymers in aqueous solutions. Journal of Controlled Release, 2001, 73, 315-327.	9.9	123

#	Article	IF	Citations
217	A novel conducting soluble polypyrrole composite with a polymeric co-dopant. Synthetic Metals, 2000, 114, 347-353.	3.9	48
218	Electroactive and temperature-sensitive hydrogel composites. Journal of Applied Polymer Science, 1999, 74, 311-321.	2.6	13
219	Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. Journal of Polymer Science Part A, 1999, 37, 751-760.	2.3	120
220	Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. II. Journal of Polymer Science Part A, 1999, 37, 2207-2218.	2.3	77
221	Polypyrrole/thermally sensitive polyelectrolyte composite (I). Synthetic Metals, 1999, 104, 119-127.	3.9	14
222	Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. II. Journal of Polymer Science Part A, 1999, 37, 2207-2218.	2.3	1
223	The Effect of Functional Group Content on Poly(ethylene terephthalate)/High Density Polyethylene Blends Compatibilized with Poly(ethylene-co-acrylic acid). Polymer Journal, 1997, 29, 274-278.	2.7	14
224	Biodegradable block copolymers as injectable drug-delivery systems. Nature, 1997, 388, 860-862.	27.8	1,871
225	Gas permeation behavior of PS/PPO blends. Journal of Membrane Science, 1997, 127, 9-15.	8.2	22
226	Drug releasing characteristics of thermo- and pH-sensitive interpenetrating polymer networks based on poly (N-isopropylacrylamide). Journal of Applied Polymer Science, 1997, 64, 2647-2655.	2.6	77
227	Structure development via reaction-induced phase separation in tetrafunctional epoxy/polysulfone blends. Journal of Applied Polymer Science, 1997, 66, 2233-2242.	2.6	36
228	Drug releasing characteristics of thermo―and pHâ€sensitive interpenetrating polymer networks based on poly (Nâ€isopropylacrylamide). Journal of Applied Polymer Science, 1997, 64, 2647-2655.	2.6	1
229	Structure development via reactionâ€induced phase separation in tetrafunctional epoxy/polysulfone blends. Journal of Applied Polymer Science, 1997, 66, 2233-2242.	2.6	1
230	Thermal stability and compatibility of epoxy/polycarbonate and epoxy/tetramethyl polycarbonate blends. Journal of Applied Polymer Science, 1996, 59, 1639-1649.	2.6	10
231	Gas Transport in Polyurethaneâ€"Polystyrene Interpenetrating Polymer Network Membranes. Advances in Chemistry Series, 1994, , 463-485.	0.6	6
232	Gas transport in polyurethane-polystyrene interpenetrating polymer network membranes. II. Effect of crosslinked state and annealing. Journal of Membrane Science, 1992, 75, 15-27.	8.2	21
233	Polyurethane–Polystyrene Interpenetrating Polymer Networks Synthesized at Low Temperature: Effect of Temperature Change during Synthesis. Polymer Journal, 1991, 23, 241-245.	2.7	5
234	Polyurethane–polystyrene interpenetrating polymer networks synthesized at low temperature: Effect of crosslinking level. Journal of Applied Polymer Science, 1991, 43, 481-488.	2.6	14

#	ARTICLE	IF	CITATION
235	Gas transport in polyurethane–polystyrene interpenetrating polymer network membranes. Polymers for Advanced Technologies, 1990, 1, 231-238.	3.2	8
236	Preparation of transparent conducting acrylic composite and its electrical properties. Journal of Applied Polymer Science, 1990, 40, 1487-1498.	2.6	7
237	Miscibility of Polybenzimidazole/Polyimidesulfone and Related Copolymers Blends. Polymer Journal, 1989, 21, 751-762.	2.7	23
238	Polyurethane-polystyrene interpenetrating polymer networks: effect of photopolymerization temperature. Macromolecules, 1986, 19, 2589-2593.	4.8	26
239	Polyurethane interpenetrating polymer networks (IPN's) synthesized under high pressure. 4. Compositional variation of polyurethane-polystyrene IPN's and linear blends. Macromolecules, 1985, 18, 2173-2179.	4.8	43
240	Polyurethane interpenetrating polymer networks (IPN's) synthesized under high pressure. 3. Morphology and Tg behavior of polyurethane-polystyrene semi-IPN's and linear blends. Macromolecules, 1984, 17, 2222-2227.	4.8	21
241	Polyurethane Interpenetrating Polymer-Networks (IPN's) synthesized under high pressure. 2. Morphology and Tg behavior of polyurethane-polystyrene IPN's. Macromolecules, 1984, 17, 2193-2196.	4.8	33
242	Polyurethane interpenetrating polymer networks (IPN's) synthesized under high pressure. 1. Morphology and Tg behavior of polyurethane-poly(methyl methacrylate) IPN's. Macromolecules, 1984, 17, 268-272.	4.8	41