Robin M Mcallen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6213996/publications.pdf

Version: 2024-02-01

131 papers

7,152 citations

41323 49 h-index 81 g-index

132 all docs 132 docs citations

times ranked

132

4484 citing authors

#	Article	IF	Citations
1	The brain renin–angiotensin system: location and physiological roles. International Journal of Biochemistry and Cell Biology, 2003, 35, 901-918.	1.2	445
2	The cholinergic anti-inflammatory pathway: A critical review. Autonomic Neuroscience: Basic and Clinical, 2014, 182, 65-69.	1.4	309
3	The location of cardiac vagal preganglionic motoneurones in the medulla of the cat Journal of Physiology, 1976, 258, 187-204.	1.3	206
4	Vasopressin Secretion: Osmotic and Hormonal Regulation by the Lamina Terminalis. Journal of Neuroendocrinology, 2004, 16, 340-347.	1.2	194
5	Two types of vagal preganglionic motoneurones projecting to the heart and lungs. Journal of Physiology, 1978, 282, 353-364.	1.3	188
6	Reflex control of inflammation by sympathetic nerves, not the vagus. Journal of Physiology, 2014, 592, 1677-1686.	1.3	187
7	Effects of kainic acid applied to the ventral surface of the medulla oblongata on vasomotor tone, the baroreceptor reflex and hypothalamic autonomic responses. Brain Research, 1982, 238, 65-76.	1.1	168
8	The baroreceptor input to cardiac vagal motoneurones. Journal of Physiology, 1978, 282, 365-374.	1.3	164
9	Differential control of sympathetic fibres supplying hindlimb skin and muscle by subretrofacial neurones in the cat Journal of Physiology, 1988, 395, 41-56.	1.3	161
10	Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons. Experimental Physiology, 2012, 97, 1180-1185.	0.9	156
11	Intravenous hypertonic saline induces Fos immunoreactivity in neurons throughout the lamina terminalis. Brain Research, 1991, 561, 151-156.	1.1	154
12	The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiologica, 2015, 214, 8-32.	1.8	150
13	Identification and properties of sub-retrofacial bulbospinal neurones: a descending cardiovascular pathway in the cat. Journal of the Autonomic Nervous System, 1986, 17, 151-164.	1.9	138
14	The sinus nerve and baroreceptor input to the medulla of the cat Journal of Physiology, 1975, 251, 61-78.	1.3	134
15	Action and specificity of ventral medullary vasopressor neurones in the cat. Neuroscience, 1986, 18, 51-59.	1.1	114
16	Vasomotor neurons in the rostral ventrolateral medulla are organized topographically with respect to type of vascular bed but not body region. Neuroscience Letters, 1990, 110, 91-96.	1.0	113
17	A comparison of hypotensive and non-hypotensive hemorrhage on Fos expression in spinally projecting neurons of the paraventricular nucleus and rostral ventrolateral medulla. Brain Research, 1993, 610, 216-223.	1.1	104
18	The carotid chemoreceptor input to the respiratory neurones of the nucleus of tractus solitarius. Journal of Physiology, 1977, 269, 797-810.	1.3	103

#	Article	IF	CITATIONS
19	Differential control of sympathetic drive to the rat tail artery and kidney by medullary premotor cell groups. Brain Research, 1999, 834, 196-199.	1.1	103
20	Location of neurones with cardiovascular and respiratory function, at the ventral surface of the cat's medulla. Neuroscience, 1986, 18, 43-49.	1.1	102
21	Role of the medullary raphé in thermoregulatory vasomotor control in rats. Journal of Physiology, 2002, 540, 657-664.	1.3	99
22	GABA antagonists applied to the ventral surface of the medulla oblongata block the baroreceptor reflex. Brain Research, 1984, 297, 175-180.	1.1	98
23	Central respiratory modulation of subretrofacial bulbospinal neurones in the cat Journal of Physiology, 1987, 388, 533-545.	1.3	95
24	Multiple thermoregulatory effectors with independent central controls. European Journal of Applied Physiology, 2010, 109, 27-33.	1.2	95
25	Cortical, thalamic, and hypothalamic responses to cooling and warming the skin in awake humans: A positron-emission tomography study. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5262-5267.	3.3	92
26	Vagal afferent activation suppresses systemic inflammation via the splanchnic anti-inflammatory pathway. Brain, Behavior, and Immunity, 2018, 73, 441-449.	2.0	91
27	Distribution of hypothalamic, medullary and lamina terminalis neurons expressing Fos after hemorrhage in conscious rats. Brain Research, 1992, 582, 323-328.	1.1	90
28	Neural Pathways From The Lamina Terminalis Influencing Cardiovascular And Body Fluid Homeostasis. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 990-992.	0.9	87
29	SYMPATHETIC BURST ACTIVITY: CHARACTERISTICS AND SIGNIFICANCE. Clinical and Experimental Pharmacology and Physiology, 1997, 24, 791-799.	0.9	85
30	Basis for the preferential activation of cardiac sympathetic nerve activity in heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 924-928.	3.3	84
31	Chapter 51: Efferent neural pathways of the lamina terminalis subserving osmoregulation. Progress in Brain Research, 1992, 91, 395-402.	0.9	81
32	Thermoregulatory Control of Sympathetic Fibres Supplying the Rat's Tail. Journal of Physiology, 2002, 543, 849-858.	1.3	79
33	Brainstem sources of cardiac vagal tone and respiratory sinus arrhythmia. Journal of Physiology, 2016, 594, 7249-7265.	1.3	79
34	The low frequency power of heart rate variability is neither a measure of cardiac sympathetic tone nor of baroreflex sensitivity. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1005-H1012.	1.5	78
35	Inhibition of rostral medullary raph \tilde{A} neurons prevents cold-induced activity in sympathetic nerves to rat tail and rabbit ear arteries. Neuroscience Letters, 2004, 357, 58-62.	1.0	74
36	Distinct preganglionic neurons innervate noradrenaline and adrenaline cells in the cat adrenal medulla. Neuroscience, 1996, 70, 825-832.	1.1	73

#	Article	IF	CITATIONS
37	Human medullary responses to cooling and rewarming the skin: A functional MRI study. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 809-813.	3.3	71
38	Coldâ€activated raphéâ€spinal neurons in rats. Journal of Physiology, 2001, 535, 841-854.	1.3	69
39	Calibration of thresholds for functional engagement of vagal A, B and C fiber groups <i>in vivo</i> Bioelectronics in Medicine, 2018, 1, 21-27.	2.0	66
40	Carotid baroreceptor and chemoreceptor inputs onto single medullary neurones. Brain Research, 1976, 107, 132-136.	1.1	64
41	Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis. Journal of Physiology, 2011, 589, 5801-5818.	1.3	63
42	Preoptic–Raphé Connections for Thermoregulatory Vasomotor Control. Journal of Neuroscience, 2011, 31, 5078-5088.	1.7	62
43	Reflex activation of rat fusimotor neurons by body surface cooling, and its dependence on the medullary raphé. Journal of Physiology, 2006, 572, 569-583.	1.3	59
44	Mediation of the fastigial pressor response and a somatosympathetic reflex by ventral medullary neurones in the cat Journal of Physiology, 1985, 368, 423-433.	1.3	58
45	Vasomotor control by subretrofacial neurones in the rostral ventrolateral medulla. Canadian Journal of Physiology and Pharmacology, 1987, 65, 1572-1579.	0.7	54
46	Patterning of sympathetic nerve activity in response to vestibular stimulation. Brain Research Bulletin, 2000, 53, 11-16.	1.4	51
47	Modification of the reflex response to stimulation of carotid sinus baroreceptors during and following stimulation of the hypothalamic defence area in the cat. Journal of Physiology, 1971, 216, 461-482.	1.3	50
48	Roles of two preoptic cell groups in tonic and febrile control of rat tail sympathetic fibers. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1248-R1257.	0.9	50
49	Neurons (presumably A1-cells) projecting from the caudal ventrolateral medulla to the region of the supraoptic nucleus respond to baroreceptor inputs in the rabbit. Neuroscience Letters, 1987, 73, 247-252.	1.0	49
50	Classification of preganglionic neurones projecting into the cat cervical sympathetic trunk Journal of Physiology, 1992, 453, 319-339.	1.3	49
51	Hemorrhage induces c-fos immunoreactivity in spinally projecting neurons of cat subretrofacial nucleus. Brain Research, 1992, 575, 329-332.	1.1	49
52	Specific control of sympathetic nerve activity to the mammalian heart and kidney. Experimental Physiology, 2010, 95, 34-40.	0.9	48
53	Comparison between two rat sympathetic pathways activated in cold defense. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R589-R595.	0.9	47
54	Stimulation of cardiac sympathetic nerve activity by central angiotensinergic mechanisms in conscious sheep. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R1051-R1056.	0.9	46

#	Article	IF	Citations
55	Anti-inflammatory reflex action of splanchnic sympathetic nerves is distributed across abdominal organs. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R235-R242.	0.9	45
56	Localization of barosensitive neurons in the caudal ventrolateral medulla which project to the rostral ventrolateral medulla. Brain Research, 1994, 657, 258-268.	1.1	42
57	Functional topography of the dorsomedial hypothalamus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R477-R486.	0.9	40
58	Reflex control of inflammation by the splanchnic anti-inflammatory pathway is sustained and independent of anesthesia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1085-R1091.	0.9	37
59	Rostrocaudal differences in morphology and neurotransmitter content of cells in the subretrofacial vasomotor nucleus. Journal of the Autonomic Nervous System, 1992, 38, 117-137.	1.9	35
60	Control of the Cutaneous Circulation by the Central Nervous System. , 2016, 6, 1161-1197.		35
61	Nonuniformity in the von Bezold-Jarisch reflex. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R714-R720.	0.9	34
62	Independent vasomotor control of rat tail and proximal hairy skin. Journal of Physiology, 2007, 582, 421-433.	1.3	33
63	Nitric oxide synthase and chemical coding in cat sympathetic postganglionic neurons. Neuroscience, 1995, 68, 255-264.	1.1	32
64	Regional brain responses associated with thermogenic and psychogenic sweating events in humans. Journal of Neurophysiology, 2015, 114, 2578-2587.	0.9	32
65	Chapter 18 The selectivity of descending vasomotor control by subretrofacial neurons. Progress in Brain Research, 1989, 81, 233-242.	0.9	31
66	The interface between cholinergic pathways and the immune system and its relevance to arthritis. Arthritis Research and Therapy, 2015, 17, 87.	1.6	29
67	Monosynaptic excitation of preganglionic vasomotor neurons by subretrofacial neurons of the rostral ventrolateral medulla. Brain Research, 1994, 634, 227-234.	1.1	28
68	Ganglionic transmission in a vasomotor pathway studied <i>in vivo</i> . Journal of Physiology, 2010, 588, 1647-1659.	1.3	28
69	On the presence and functional significance of sympathetic premotor neurons with collateralized spinal axons in the rat. Journal of Physiology, 2019, 597, 3407-3423.	1.3	28
70	CRF-like immunoreactivity selectively labels preganglionic sudomotor neurons in cat. Brain Research, 1992, 599, 253-260.	1.1	27
71	Integrating Competing Demands of Osmoregulatory and Thermoregulatory Homeostasis. Physiology, 2018, 33, 170-181.	1.6	27
72	Brain stem representation of thermal and psychogenic sweating in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R810-R817.	0.9	26

#	Article	IF	Citations
73	Circulating epinephrine is not required for chronic stress to enhance metastasis. Psychoneuroendocrinology, 2019, 99, 191-195.	1.3	26
74	Analysis of sympathetic neural discharge in rats and humans. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1265-1282.	1.6	25
75	Chemical Coding for Cardiovascular Sympathetic Preganglionic Neurons in Rats. Journal of Neuroscience, 2010, 30, 11781-11791.	1.7	25
76	Sympathetic nerves control bacterial clearance. Scientific Reports, 2020, 10, 15009.	1.6	25
77	The lumbar preganglionic sympathetic supply to rat tail and hindpaw. Journal of the Autonomic Nervous System, 1998, 69, 127-131.	1.9	24
78	Cardioinhibitory actions of clonidine assessed by cardiac vagal motoneuron recordings. Journal of Hypertension, 2008, 26, 1169-1180.	0.3	24
79	Location of cat brain stem neurons that drive sweating. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R804-R809.	0.9	24
80	Selective optogenetic stimulation of efferent fibers in the vagus nerve of a large mammal. Brain Stimulation, 2021, 14, 88-96.	0.7	24
81	Actions of carotid chemoreceptors on subretrofacial bulbospinal neurons in the cat. Journal of the Autonomic Nervous System, 1992, 40, 181-188.	1.9	23
82	A subsidiary fever center in the medullary raph \tilde{A} @?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1592-R1598.	0.9	23
83	Misidentification of cardiac vagal pre-ganglionic neurons after injections of retrograde tracer into the pericardial space in the rat. Cell and Tissue Research, 2005, 321, 335-340.	1.5	22
84	Preoptic activation and connectivity during thermal sweating in humans. Temperature, 2014, 1, 135-141.	1.6	22
85	Advancing respiratory–cardiovascular physiology with the working heart–brainstem preparation over 25 years. Journal of Physiology, 2022, 600, 2049-2075.	1.3	22
86	DIFFERENTIAL CONTROL OF CARDIAC FUNCTIONS BY THE BRAIN. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 1255-1258.	0.9	21
87	Control of postganglionic neurone phenotype by the rat pineal gland. Neuroscience, 2002, 109, 329-337.	1.1	19
88	Effect of clonidine on cardiac baroreflex delay in humans and rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R949-R957.	0.9	19
89	Baroreceptor inhibition of subretrofacial neurons: evidence from intracellular recordings in the cat. Neuroscience Letters, 1990, 111, 139-143.	1.0	18
90	CENTRAL OSMOREGULATORY INFLUENCES ON THERMOREGULATION. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 701-705.	0.9	18

#	Article	IF	Citations
91	Brain activation associated with ratings of the hedonic component of thermal sensation during whole-body warming and cooling. Journal of Thermal Biology, 2011, 36, 57-63.	1.1	18
92	ANP potentiates nonarterial baroreflex bradycardia: evidence from sinoaortic denervation in rats. Autonomic Neuroscience: Basic and Clinical, 2002, 97, 89-98.	1.4	17
93	Role of an excitatory preoptic-raph $ ilde{A}$ © pathway in febrile vasoconstriction of the rat's tail. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R1479-R1489.	0.9	17
94	Efferent thermoregulatory pathways regulating cutaneous blood flow and sweating. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 156, 305-316.	1.0	16
95	Reflex regulation of systemic inflammation by the autonomic nervous system. Autonomic Neuroscience: Basic and Clinical, 2021, 237, 102926.	1.4	16
96	Re-establishment of neurochemical coding of preganglionic neurons innervating transplanted targets. Neuroscience, 2003, 117, 347-360.	1.1	12
97	Spinal cord thermosensitivity: An afferent phenomenon?. Temperature, 2016, 3, 232-239.	1.6	12
98	Preoptic thermoregulatory mechanisms in detail. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R272-R273.	0.9	11
99	Restorative Effect of Atrial Natriuretic Peptide or Chronic Neutral Endopeptidase Inhibition on Blunted Cardiopulmonary Vagal Reflexes in Aged Rats. Hypertension, 2008, 52, 696-701.	1.3	11
100	Control of cardiac rate, contractility, and atrioventricular conduction by medullary raph \tilde{A} \otimes neurons in anesthetized rats. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H318-H324.	1.5	11
101	Neural control of inflammation by the greater splanchnic nerves. Temperature, 2014, 1, 14-15.	1.6	10
102	Aldosterone acts on the kidney, not the brain, to cause mineralocorticoid hypertension in sheep. Journal of Hypertension, 2002, 20, 1203-1208.	0.3	9
103	Letter to the editor: Parasympathetic innervation of the rodent spleen?. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H2158-H2158.	1.5	9
104	The endogenous inflammatory reflex inhibits the inflammatory response to different immune challenges in mice. Brain, Behavior, and Immunity, 2021, 97, 371-375.	2.0	9
105	Long-latency baroreceptor inhibition of supraoptic neurones in the cat. Neuroscience Letters, 1988, 84, 287-290.	1.0	8
106	Interaction between thermoregulation and osmoregulation in domestic animals. Revista Brasileira De Zootecnia, 2017, 46, 783-790.	0.3	8
107	Reflex control of rat tail sympathetic nerve activity by abdominal temperature. Temperature, 2014, 1, 37-41.	1.6	7
108	A new algorithm for drift compensation in multi-unit recordings of action potentials in peripheral autonomic nerves over time. Journal of Neuroscience Methods, 2020, 338, 108683.	1.3	7

#	Article	IF	Citations
109	The role of glycinergic inhibition in respiratory pattern formation and cardio-respiratory coupling in rats. Current Research in Physiology, 2021, 4, 80-93.	0.8	7
110	Are pre-ganglionic neurones recruited in a set order?. Acta Physiologica Scandinavica, 2003, 177, 219-225.	2.3	6
111	The cold path to BAT. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R124-R126.	0.9	6
112	Is CRF a ganglionic transmitter or modulator in the cat sudomotor pathway?. Brain Research, 1994, 652, 129-136.	1.1	4
113	A Simple Method for Generating a Blood Pressure-Unit Activity Relationship for Central Cardiovascular Neurons in the Rat. Experimental Physiology, 2002, 87, 535-538.	0.9	4
114	A NEGLECTED 'ACCESSORY' VASOMOTOR PATHWAY: IMPLICATIONS FOR BLOOD PRESSURE CONTROL. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 473-477.	0.9	4
115	Segmental origins of cardiac sympathetic nerve activity in rats. Autonomic Neuroscience: Basic and Clinical, 2015, 187, 45-49.	1.4	4
116	Modeling experimental recordings of vagal afferent signaling of intestinal inflammation for neuromodulation. Journal of Neural Engineering, 2018, 15, 056032.	1.8	4
117	An arterially perfused brainstem preparation of guinea pig to study central mechanisms of airway defense. Journal of Neuroscience Methods, 2019, 317, 49-60.	1.3	3
118	The conduction velocity of the descending spinal pathway to the renal sympathetic nerve in the cat. Journal of the Autonomic Nervous System, 1990, 30, 139-142.	1.9	2
119	Electrical stimulation of the renal nerve neither replicates its natural burst pattern nor proves the importance of that pattern for renal function American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R355-R356.	0.9	2
120	DISTINCT BRAINSTEM ORIGINS OF CARDIAC VAGAL TONE AND RESPIRATORY SINUS ARRHYTHMIA. FASEB Journal, 2015, 29, 1056.3.	0.2	2
121	Sympathetic vasomotor tone—time to move beyond the Network Oscillator Hypothesis?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1285-R1287.	0.9	1
122	Personal body maps. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R317-R318.	0.9	1
123	Neuroendocrine Self-Control: Dendritic Release of Vasopressin. Endocrinology, 2007, 148, 477-478.	1.4	1
124	Short of air? Cool it!. Journal of Physiology, 2009, 587, 5009-5010.	1.3	1
125	Reply to "Letter to the editor: Does low-frequency power of heart rate variability correlate with cardiac sympathetic tone in normal sheep?― American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H148-H149.	1.5	1
126	Satellite Symposium on Neural Mechanisms in Hypertension. Clinical and Experimental Pharmacology and Physiology, 1998, 25, 445-445.	0.9	0

ROBIN M MCALLEN

#	Article	IF	CITATIONS
127	The peptide or the neuron?. Journal of Physiology, 2010, 588, 4067-4068.	1.3	0
128	Thermal physiology in a changing thermal world. Temperature, 2015, 2, 22-26.	1.6	0
129	Functional topography of the dorsomedial hypothalamus. FASEB Journal, 2008, 22, 1167.6.	0.2	O
130	Neural reflex control of immunity: the splanchnic antiâ€inflammatory pathway (875.1). FASEB Journal, 2014, 28, 875.1.	0.2	0
131	Cardiac vagal activity and daily clinical practice. Journal of Clinical and Translational Research, 2016, 2, 1-2.	0.3	0