David Novoa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6213988/publications.pdf

Version: 2024-02-01

		430874	526287
54	800	18	27
papers	citations	h-index	g-index
54	54	54	727
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Harnessing Multi-Octave Coherent Light Using Anti-Resonant Fibers. , 2022, , .		O
2	Tunable and state-preserving frequency conversion of single photons in hydrogen. Science, 2022, 376, 621-624.	12.6	15
3	Seven-octave high-brightness and carrier-envelope-phase-stable light source. Nature Photonics, 2021, 15, 277-280.	31.4	57
4	Efficient self-compression of ultrashort near-UV pulses in air-filled hollow-core photonic crystal fibers. Optics Express, 2021, 29, 13787.	3.4	14
5	Quantum-Correlation-Preserving Single-Photon Conversion by Molecular Modulation in Gas-filled Hollow-Core Fibres. , 2021, , .		O
6	Specialty Photonic Crystal Fibers and Their Applications. Crystals, 2021, 11, 739.	2.2	4
7	Seven-octave Ultra-bright Pulse Generation. , 2021, , .		1
8	340 - 40,000 nm coherent light source. , 2021, , .		0
9	Narrowband Vacuum Ultraviolet Light via Cooperative Raman Scattering in Dual-Pumped Gas-Filled Photonic Crystal Fiber. ACS Photonics, 2020, 7, 1989-1993.	6.6	3
10	Sub-40  fs pulses at 1.8  Âμm and MHz repetition rates by chirp-assisted Raman scattering in hollow-core fiber. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3550.	nydrogen-f 2.1	illed 18
11	Robust excitation and Raman conversion of guided vortices in a chiral gas-filled photonic crystal fiber. Optics Letters, 2020, 45, 1766.	3.3	7
12	Narrowband VUV Light by Molecular Modulation in Dual- Pumped H2-filled Hollow-Core Photonic Crystal Fiber. , 2020, , .		0
13	Polarization-Tailored Raman Frequency Conversion in Chiral Gas-Filled Hollow-Core Photonic Crystal Fibers. Physical Review Letters, 2019, 122, 143902.	7.8	8
14	Thresholdless deep and vacuum ultraviolet Raman frequency conversion in hydrogen-filled photonic crystal fiber. Optica, 2019, 6, 731.	9.3	15
15	Optical traps and anti-traps for glass nanoplates in hollow waveguides. Optics Express, 2019, 27, 17708.	3.4	1
16	UV Soliton Dynamics and Raman-Enhanced Supercontinuum Generation in Photonic Crystal Fiber. ACS Photonics, 2018, 5, 2426-2430.	6.6	25
17	Broadband and tunable time-resolved THz system using argon-filled hollow-core photonic crystal fiber. APL Photonics, 2018, 3, .	5.7	22
18	Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers. Photonics Research, 2018, 6, 84.	7.0	67

#	Article	lF	Citations
19	Dominance of backward stimulated Raman scattering in gas-filled hollow-core photonic crystal fibers. Optica, 2018, 5, 570.	9.3	8
20	Universality of Coherent Raman Gain Suppression in Gas-Filled Broadband-Guiding Photonic Crystal Fibers. Physical Review Applied, 2017, 7, .	3.8	14
21	Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion. Nature Communications, 2017, 8, 813.	12.8	51
22	Fresnel-Reflection-Free Self-Aligning Nanospike Interface between a Step-Index Fiber and a Hollow-Core Photonic-Crystal-Fiber Gas Cell. Physical Review Applied, 2017, 8, .	3.8	16
23	Coherent control of flexural vibrations in dual-nanoweb fibers using phase-modulated two-frequency light. Physical Review A, 2017, 96, .	2.5	6
24	Enhanced Control of Transient Raman Scattering Using Buffered Hydrogen in Hollow-Core Photonic Crystal Fibers. Physical Review Letters, 2017, 119, 253903.	7.8	16
25	Coherent intramodal Raman gain suppression at high pump intensities in gas-filled photonic crystal fibres. , 2017, , .		0
26	Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF. Optics Express, 2017, 25, 7637.	3.4	65
27	Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillation in dual-nanoweb fiber. APL Photonics, 2016, 1 , .	5.7	27
28	Generation of a vacuum ultraviolet to visible Raman frequency comb in H_2-filled kagomé photonic crystal fiber. Optics Letters, 2016, 41, 2811.	3.3	22
29	Coherent Raman Gain Suppression in a Gas-Filled Hollow-Core PCF Pumped in the Deep Ultraviolet. , 2016, , .		1
30	Photoionization-Induced Emission of Mid-IR Dispersive Waves in Gas-Filled Photonic Crystal Fibers. , 2016, , .		0
31	Photoionization-Induced Emission of Tunable Few-Cycle Midinfrared Dispersive Waves in Gas-Filled Hollow-Core Photonic Crystal Fibers. Physical Review Letters, 2015, 115, 033901.	7.8	35
32	Dramatic Raman Gain Suppression in the Vicinity of the Zero Dispersion Point in a Gas-Filled Hollow-Core Photonic Crystal Fiber. Physical Review Letters, 2015, 115, 243901.	7.8	23
33	Modulational instability windows in the nonlinear SchrĶdinger equation involving higher-order Kerr responses. Physical Review E, 2015, 91, 012904.	2.1	2
34	Broadband-tunable LP_01 mode frequency shifting by Raman coherence waves in a H_2-filled hollow-core photonic crystal fiber. Optica, 2015, 2, 536.	9.3	24
35	Supercontinuum up-conversion via molecular modulation in gas-filled hollow-core PCF. Optics Express, 2014, 22, 20566.	3.4	12
36	Optimized photonic gauge of extreme high vacuum with Petawatt lasers. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 065601.	1.5	2

#	Article	IF	Citations
37	Self-induced mode mixing of ultraintense lasers in vacuum. Physical Review A, 2014, 90, .	2.5	18
38	The key role of off-axis singularities in free-space vortex transmutation. Applied Physics B: Lasers and Optics, 2014, 116, 779-783.	2.2	9
39	Multistability and spontaneous breaking in pulse-shape symmetry in fiber ring cavities. Optics Express, 2014, 22, 3045.	3.4	22
40	Selective excitation of higher order modes in hollow-core PCF via prism-coupling. Optics Letters, 2014, 39, 3736.	3.3	29
41	Quantum Vacuum Polarization Searches with High Power Lasers Below the Pair Production Regime. Springer Series in Chemical Physics, 2014, , 137-153.	0.2	4
42	Spectrally resolved shot-to-shot nonlinear dynamics of a passive PCF ring cavity. , 2014, , .		0
43	Dynamical generation of interwoven soliton trains by nonlinear emission in binary Bose-Einstein condensates. Physical Review A, 2013, 88, .	2.5	4
44	Characterization of the thermal refraction in ionic liquids induced by a train of femtosecond laser pulses. Proceedings of SPIE, 2013, , .	0.8	0
45	Ultrasolitons: Multistability and subcritical power threshold from higher-order Kerr terms. Europhysics Letters, 2012, 98, 44003.	2.0	4
46	Measuring Extreme Vacuum Pressure with Ultraintense Lasers. Physical Review Letters, 2012, 109, 253903.	7.8	4
47	Z-scan measurement of the nonlinear response of new materials by using a high-repetition-rate femtosecond laser. Proceedings of SPIE, 2011, , .	0.8	0
48	Coherent atomic soliton molecules for matter-wave switching. Physical Review A, 2011, 83, .	2.5	38
49	Continuous atom laser with Bose–Einstein condensates involving three-body interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 105302.	1.5	2
50	Filamentation processes and dynamical excitation of light condensates in optical media with competing nonlinearities. Physical Review A, 2010, 81 , .	2.5	6
51	Fermionic Light in Common Optical Media. Physical Review Letters, 2010, 105, 203904.	7.8	24
52	Pressure, Surface Tension, and Dripping of Self-Trapped Laser Beams. Physical Review Letters, 2009, 103, 023903.	7.8	20
53	Non-quantum liquefaction of coherent gases. Physica D: Nonlinear Phenomena, 2009, 238, 1490-1495.	2.8	4
54	Supersolitons: Solitonic Excitations in Atomic Soliton Chains. Physical Review Letters, 2008, 101, 144101.	7.8	31