
Pyong Woo Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6213961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of HSPGs in Systemic Bacterial Infections. Methods in Molecular Biology, 2022, 2303, 605-625.	0.4	2
2	Coreceptor functions of cell surface heparan sulfate proteoglycans. American Journal of Physiology - Cell Physiology, 2022, 322, C896-C912.	2.1	20
3	Proteoglycans. , 2022, , .		0
4	CD138 expression is a molecular signature but not a developmental requirement for RORÎ ³ t+ NKT17 cells. JCI Insight, 2021, 6, .	2.3	5
5	A stem cell reporter based platform to identify and target drug resistant stem cells in myeloid leukemia. Nature Communications, 2020, 11, 5998.	5.8	8
6	Extracellular Matrix: Surface Proteoglycans. , 2020, , .		1
7	Syndecan-1 Promotes Streptococcus pneumoniae Corneal Infection by Facilitating the Assembly of Adhesive Fibronectin Fibrils. MBio, 2020, 11, .	1.8	13
8	Host syndecan-1 promotes listeriosis by inhibiting intravascular neutrophil extracellular traps. PLoS Pathogens, 2020, 16, e1008497.	2.1	7
9	Design of anti-inflammatory heparan sulfate to protect against acetaminophen-induced acute liver failure. Science Translational Medicine, 2020, 12, .	5.8	60
10	Host syndecan-1 promotes listeriosis by inhibiting intravascular neutrophil extracellular traps. , 2020, 16, e1008497.		0
11	Host syndecan-1 promotes listeriosis by inhibiting intravascular neutrophil extracellular traps. , 2020, 16, e1008497.		0
12	Glycobiology of syndecan-1 in bacterial infections. Biochemical Society Transactions, 2018, 46, 371-377.	1.6	20
13	Characterization of the zinc metalloprotease of Streptococcus suis serotype 2. Veterinary Research, 2018, 49, 109.	1.1	8
14	Isolation and functional analysis of syndecans. Methods in Cell Biology, 2018, 143, 317-333.	0.5	20
15	Syndecan-1 Regulates Psoriasiform Dermatitis by Controlling Homeostasis of IL-17–Producing γÎ′ T Cells. Journal of Immunology, 2018, 201, 1651-1661.	0.4	30
16	Introduction to the thematic mini-review series on "Matrix biology in lung health and disease― Matrix Biology, 2018, 73, 1-5.	1.5	3
17	Identification of Syndecan-1 As a Key Dependency of Myeloid Leukemia Growth and Dissemination. Blood, 2018, 132, 3003-3003.	0.6	3
18	<i>EXTL3</i> mutations cause skeletal dysplasia, immune deficiency, and developmental delay. Journal of Experimental Medicine, 2017, 214, 623-637.	4.2	76

#	Article	IF	CITATIONS
19	Loss of Syndecan-1 Abrogates the Pulmonary Protective Phenotype Induced by Plasma After Hemorrhagic Shock. Shock, 2017, 48, 340-345.	1.0	42
20	Syndecanâ€1 limits the progression of liver injury and promotes liver repair in acetaminophenâ€induced liver injury in mice. Hepatology, 2017, 66, 1601-1615.	3.6	30
21	CD138 mediates selection of mature plasma cells by regulating their survival. Blood, 2017, 129, 2749-2759.	0.6	89
22	Glycosaminoglycans and infection. Frontiers in Bioscience - Landmark, 2016, 21, 1260-1277.	3.0	116
23	Shedding of Syndecan-1/CXCL1 Complexes by Matrix Metalloproteinase 7 Functions as an Epithelial Checkpoint of Neutrophil Activation. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 243-251.	1.4	44
24	Plasma-Mediated Gut Protection After Hemorrhagic Shock is Lessened in Syndecan-1â^'/â^' MICE. Shock, 2015, 44, 452-457.	1.0	26
25	2-O-Sulfated Domains in Syndecan-1 Heparan Sulfate Inhibit Neutrophil Cathelicidin and Promote Staphylococcus aureus Corneal Infection. Journal of Biological Chemistry, 2015, 290, 16157-16167.	1.6	26
26	Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. Journal of Cell Biology, 2015, 210, 1199-1211.	2.3	88
27	Role of Glycosaminoglycans in Infectious Disease. Methods in Molecular Biology, 2015, 1229, 567-585.	0.4	44
28	The endothelial glycocalyx in syndecan-1 deficient mice. Microvascular Research, 2013, 87, 83-91.	1.1	40
29	Fresh Frozen Plasma Lessens Pulmonary Endothelial Inflammation and Hyperpermeability After Hemorrhagic Shock and Is Associated With Loss of Syndecan 1. Shock, 2013, 40, 195-202.	1.0	173
30	Lysostaphin. , 2013, , 1558-1560.		0
31	Syndecan-1 Displays a Protective Role in Aortic Aneurysm Formation by Modulating T Cell–Mediated Responses. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 386-396.	1.1	33
32	Molecular functions of syndecan-1 in disease. Matrix Biology, 2012, 31, 3-16.	1.5	293
33	Shedding of Cell Membrane-Bound Proteoglycans. Methods in Molecular Biology, 2012, 836, 291-305.	0.4	60
34	Modulation of Syndecan-1 Shedding after Hemorrhagic Shock and Resuscitation. PLoS ONE, 2011, 6, e23530.	1.1	171
35	Dual Protective Mechanisms of Matrix Metalloproteinases 2 and 9 in Immune Defense against <i>Streptococcus pneumoniae</i> . Journal of Immunology, 2011, 186, 6427-6436.	0.4	36
36	Syndecan-1 Promotes Staphylococcus aureus Corneal Infection by Counteracting Neutrophil-mediated Host Defense. Journal of Biological Chemistry, 2011, 286, 3288-3297.	1.6	43

#	Article	IF	CITATIONS
37	Heparan Sulfate Proteoglycans in Infection. , 2011, , 31-62.		13
38	Proteoglycans in host–pathogen interactions: molecular mechanisms and therapeutic implications. Expert Reviews in Molecular Medicine, 2010, 12, e5.	1.6	98
39	Molecular and Cellular Mechanisms of Ectodomain Shedding. Anatomical Record, 2010, 293, 925-937.	0.8	154
40	Molecular and Cellular Mechanisms of Ectodomain Shedding. Anatomical Record, 2010, 293, spc1-spc1.	0.8	0
41	Diverse Functions of Clycosaminoglycans in Infectious Diseases. Progress in Molecular Biology and Translational Science, 2010, 93, 373-394.	0.9	39
42	Staphylococcus aureus Beta-Toxin Induces Lung Injury through Syndecan-1. American Journal of Pathology, 2009, 174, 509-518.	1.9	99
43	Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines. Blood, 2009, 114, 3033-3043.	0.6	142
44	αâ€Toxin Facilitates the Generation of CXC Chemokine Gradients and Stimulates Neutrophil Homing in <i>Staphylococcus aureus</i> Pneumonia. Journal of Infectious Diseases, 2008, 198, 1529-1535.	1.9	89
45	Syndecan-1 Ectodomain Shedding Is Regulated by the Small GTPase Rab5. Journal of Biological Chemistry, 2008, 283, 35435-35444.	1.6	62
46	Syndecan-1 Is an in Vivo Suppressor of Gram-positive Toxic Shock. Journal of Biological Chemistry, 2008, 283, 19895-19903.	1.6	41
47	Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. Journal of Clinical Investigation, 2008, 118, 229-238.	3.9	131
48	Microbial subversion of heparan sulfate proteoglycans. Molecules and Cells, 2008, 26, 415-26.	1.0	54
49	Streptococcus pneumoniae Sheds Syndecan-1 Ectodomains through ZmpC, a Metalloproteinase Virulence Factor. Journal of Biological Chemistry, 2007, 282, 159-167.	1.6	59
50	Increase in soluble CD138 in bronchoalveolar lavage fluid of multicentric Castleman's disease. Respirology, 2007, 12, 140-143.	1.3	5
51	MMP2 and MMP9 mediate innate immune response to Pneumococcal pneumonia. FASEB Journal, 2007, 21, A183.	0.2	0
52	Molecular and cellular mechanisms of syndecans in tissue injury and inflammation. Molecules and Cells, 2007, 24, 153-66.	1.0	69
53	Synthesis of Syndecan-1 by Skeletal Muscle Cells Is an Early Response to Infection with Trichinella spiralis but Is Not Essential for Nurse Cell Development. Infection and Immunity, 2006, 74, 1941-1943.	1.0	12
54	Syndecan-1 Expression in Epithelial Cells Is Induced by Transforming Growth Factor β through a PKA-dependent Pathway. Journal of Biological Chemistry, 2006, 281, 24365-24374.	1.6	53

#	Article	IF	CITATIONS
55	Loss of cellâ€associated heparan sulfate (HS) amplifies IFNγ―and TNFαâ€induced protein leakage in a model of Protein‣osing Enteropathy (PLE). FASEB Journal, 2006, 20, A913.	0.2	1
56	Endogenous Attenuation of Allergic Lung Inflammation by Syndecan-1. Journal of Immunology, 2005, 174, 5758-5765.	0.4	97
57	Syndecan 1 Shedding Contributes to Pseudomonas aeruginosa Sepsis. Infection and Immunity, 2005, 73, 7914-7921.	1.0	64
58	Protamine sulfate reduces the susceptibility of thermally injured mice to Pseudomonas aeruginosa infection1. Journal of Surgical Research, 2005, 123, 109-117.	0.8	10
59	Blocking of Monocyte Chemoattractant Protein-1 during Tubulointerstitial Nephritis Resulted in Delayed Neutrophil Clearance. American Journal of Pathology, 2005, 167, 637-649.	1.9	23
60	Syndecan-1 in Microbial Pathogenesis, Host Defense, and Inflammation. Trends in Glycoscience and Glycotechnology, 2005, 17, 271-284.	0.0	1
61	The N-terminal A Domain of Fibronectin-binding Proteins A and B Promotes Adhesion of Staphylococcus aureus to Elastin. Journal of Biological Chemistry, 2004, 279, 38433-38440.	1.6	116
62	Activation of Syndecan-1 Ectodomain Shedding by Staphylococcus aureus α-Toxin and β-Toxin. Journal of Biological Chemistry, 2004, 279, 251-258.	1.6	97
63	Lysostaphin. , 2004, , 1004-1005.		3
64	The Elastin-binding Protein of Staphylococcus aureus(EbpS) Is Expressed at the Cell Surface as an Integral Membrane Protein and Not as a Cell Wall-associated Protein. Journal of Biological Chemistry, 2002, 277, 243-250.	1.6	123
65	Matrilysin Shedding of Syndecan-1 Regulates Chemokine Mobilization and Transepithelial Efflux of Neutrophils in Acute Lung Injury. Cell, 2002, 111, 635-646.	13.5	706
66	Unlocking the secrets of syndecans: Transgenic organisms as a potential key. Glycoconjugate Journal, 2002, 19, 295-304.	1.4	32
67	Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature, 2001, 411, 98-102.	13.7	225
68	Cell Surface Heparan Sulfate Proteoglycans: Selective Regulators of Ligand-Receptor Encounters. Journal of Biological Chemistry, 2000, 275, 29923-29926.	1.6	324
69	Shedding of Syndecan-1 and -4 Ectodomains Is Regulated by Multiple Signaling Pathways and Mediated by a Timp-3–Sensitive Metalloproteinase. Journal of Cell Biology, 2000, 148, 811-824.	2.3	380
70	Syndecan-1 Shedding Is Enhanced by LasA, a Secreted Virulence Factor of Pseudomonas aeruginosa. Journal of Biological Chemistry, 2000, 275, 3057-3064.	1.6	139
71	Characterization of the Elastin Binding Domain in the Cell-surface 25-kDa Elastin-binding Protein of Staphylococcus aureus (EbpS). Journal of Biological Chemistry, 1999, 274, 2845-2850.	1.6	25
72	Functions of Cell Surface Heparan Sulfate Proteoglycans. Annual Review of Biochemistry, 1999, 68, 729-777.	5.0	2,490

#	Article	IF	CITATIONS
73	Lysozyme Binds to Elastin and Protects Elastin from Elastase-Mediated Degradation. Journal of Investigative Dermatology, 1996, 106, 1075-1080.	0.3	44
74	Molecular Cloning and Expression of the Gene for Elastin-binding Protein (ebpS) in Staphylococcus aureus. Journal of Biological Chemistry, 1996, 271, 15803-15809.	1.6	92
75	Binding and degradation of elastin by the staphylolytic enzyme lysostaphin. International Journal of Biochemistry and Cell Biology, 1995, 27, 139-146.	1.2	33
76	Characterization of a putative clone for the 67-kilodalton elastin/laminin receptor suggests that it encodes a cytoplasmic protein rather than a cell surface receptor. Biochemistry, 1991, 30, 3346-3350.	1.2	53
77	Polyclonal antibodies to tropoelastin and the specific detection and measurement of tropoelastinin vitro. Connective Tissue Research, 1991, 25, 265-279.	1.1	32
78	Biological Roles of Heparan Sulfate Proteoglycans. , 0, , 701-716.		0