Carlo Mariani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6213810/publications.pdf

Version: 2024-02-01

217 papers 4,927 citations

35 h-index 58 g-index

221 all docs

221 docs citations

times ranked

221

4927 citing authors

#	Article	IF	Citations
1	Absolute efficiency of a two-stage microchannel plate for electrons in the 30–900 eV energy range. Measurement Science and Technology, 2022, 33, 025102.	1.4	4
2	Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene. Nano Letters, 2022, 22, 2971-2977.	4.5	9
3	Search for Neutrino-Induced Neutral-Current <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Î"</mml:mi></mml:math> Radiative Decay in MicroBooNE and a First Test of the MiniBooNE Low Energy Excess under a Single-Photon Hypothesis. Physical Review Letters, 2022, 128,	2.9	22
4	First Measurement of Energy-Dependent Inclusive Muon Neutrino Charged-Current Cross Sections on Argon with the MicroBooNE Detector. Physical Review Letters, 2022, 128, 151801.	2.9	13
5	Implementation and optimization of the PTOLEMY transverse drift electromagnetic filter. Journal of Instrumentation, 2022, 17, P05021.	0.5	10
6	Novel approach for evaluating detector-related uncertainties in a LArTPC using MicroBooNE data. European Physical Journal C, 2022, 82, .	1.4	10
7	Argon and Other Defects in Amorphous SiO2 Coatings for Gravitational-Wave Detectors. Coatings, 2022, 12, 1001.	1.2	5
8	Tuning the Magnetic Coupling of a Molecular Spin Interface via Electron Doping. Nano Letters, 2021, 21, 666-672.	4.5	8
9	Reactor rate modulation oscillation analysis with two detectors in Double Chooz. Journal of High Energy Physics, 2021, 2021, 1.	1.6	3
10	Narrowing of <i>d</i> bands of FeCo layers intercalated under graphene. Applied Physics Letters, 2021, 118, .	1.5	6
11	Effects of the annealing of amorphous Ta2O5 coatings produced by ion beam sputtering concerning the effusion of argon and the chemical composition. Journal of Non-Crystalline Solids, 2021, 557, 120651.	1.5	10
12	High thermal stability of anti-ferromagnetic coupled molecules with FeCo layers. AIP Advances, 2021, 11, 075302.	0.6	0
13	Cosmic Ray Background Removal With Deep Neural Networks in SBND. Frontiers in Artificial Intelligence, 2021, 4, 649917.	2.0	4
14	Borocarbonitride Layers on Titanium Dioxide Nanoribbons for Efficient Photoelectrocatalytic Water Splitting. Materials, 2021, 14, 5490.	1.3	4
15	Carbon nanostructures for directional light dark matter detection. , 2021, , .		3
16	Magnetic response and electronic states of well defined Graphene/Fe/Ir(111) heterostructure. Physical Review Materials, 2021, 5, .	0.9	4
17	Deuterium Adsorption on Free-Standing Graphene. Nanomaterials, 2021, 11, 130.	1.9	14
18	Towards free-standing graphane: atomic hydrogen and deuterium bonding to nano-porous graphene. Nanotechnology, 2021, 32, 035707.	1.3	12

#	Article	IF	CITATIONS
19	Search for a Higgs Portal Scalar Decaying to Electron-Positron Pairs in the MicroBooNE Detector. Physical Review Letters, 2021, 127, 151803.	2.9	22
20	Calorimetric classification of track-like signatures in liquid argon TPCs using MicroBooNE data. Journal of High Energy Physics, 2021, 2021, 1.	1.6	10
21	The dark-PMT: a novel directional light Dark Matter detector based on vertically-aligned carbon nanotubes. Journal of Physics: Conference Series, 2021, 2156, 012051.	0.3	0
22	Ultrathin Transparent B–C–N Layers Grown on Titanium Substrates with Excellent Electrocatalytic Activity for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 1922-1932.	2.5	16
23	Response of windowless silicon avalanche photo-diodes to electrons in the 90–900 eV range. Journal of Instrumentation, 2020, 15, P11015-P11015.	0.5	8
24	First Measurement of Differential Charged Current Quasielasticlike <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub>ν<mml:mi>ν</mml:mi>νCross Sections with the MicroBooNE Detector. Physical Review Letters, 2020, 125, 201803.</mml:msub></mml:math>	2.9	34
25	Carbon nanotubes as anisotropic target for dark matter. Journal of Physics: Conference Series, 2020, 1468, 012232.	0.3	9
26	On- and off-resonance measurement of the Image State lifetime at the graphene/ $Ir(111)$ interface. Surface Science, 2019, 679, 11-16.	0.8	3
27	Polarization Effects of Transversal and Longitudinal Optical Phonons in Bundles of Multiwall Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 20013-20019.	1.5	4
28	Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 047-047.	1.9	85
29	Rejecting cosmic background for exclusive charged current quasi elastic neutrino interaction studies with Liquid Argon TPCs; a case study with the MicroBooNE detector. European Physical Journal C, 2019, 79, 1.	1.4	7
30	First Measurement of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon at <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>ϵ/mml:mi>ϵ/mml:mi>ϵ/mml:mi>ϵ/mml:mi>ϵ/mml:mi>Cl/ϵ/mml:mi>ϵ/mml:msub><mml:mo>ϵ-ϵ/mml:mi>with the MicroBooNE Detector. Physical Review Letters, 2019, 123, 131801.</mml:mo></mml:mi></mml:msub></mml:math>	o\$?mml:r	mn530.8
31	A fast synthesis route of boron–carbon–nitrogen ultrathin layers towards highly mixed ternary B–C–N phases. 2D Materials, 2019, 6, 035015.	2.0	10
32	Comparison of $\$\{varvec\{u\}\}_{varvec\{mu\}}-\Ar multiplicity distributions observed by MicroBooNE to GENIE model predictions. European Physical Journal C, 2019, 79, 1.	1.4	14
33	A design for an electromagnetic filter for precision energy measurements at the tritium endpoint. Progress in Particle and Nuclear Physics, 2019, 106, 120-131.	5.6	24
34	An experimental and theoretical study of metallorganic coordination networks of tetrahydroxyquinone on Cu(111). New Journal of Chemistry, 2019, 43, 19186-19192.	1.4	3
35	First Measurement of Monoenergetic Muon Neutrino Charged Current Interactions. Physical Review Letters, 2018, 120, 141802.	2.9	25
36	Topology and doping effects in three-dimensional nanoporous graphene. Carbon, 2018, 131, 258-265.	5.4	41

3

#	Article	IF	CITATIONS
37	The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector. European Physical Journal C, 2018, 78, 82.	1.4	71
38	Chemical vapor deposition growth of boron–carbon–nitrogen layers from methylamine borane thermolysis products. Nanotechnology, 2018, 29, 025603.	1.3	21
39	Significant Excess of Electronlike Events in the MiniBooNE Short-Baseline Neutrino Experiment. Physical Review Letters, 2018, 121, 221801.	2.9	335
40	Yields and production rates of cosmogenic 9Li and 8He measured with the Double Chooz near and far detectors. Journal of High Energy Physics, 2018, 2018, 1.	1.6	9
41	Physics potentials with the second Hyper-Kamiokande detector in Korea. Progress of Theoretical and Experimental Physics, 2018, 2018, .	1.8	77
42	Channelling and induced defects at ion-bombarded aligned multiwall carbon nanotubes. Carbon, 2018, 139, 768-775.	5.4	24
43	Three-dimensional microporous graphene decorated with lithium. Nanotechnology, 2018, 29, 405707.	1.3	1
44	High quality epitaxial graphene by hydrogen-etching of 3C-SiC(111) thin-film on Si(111). Nanotechnology, 2017, 28, 115601.	1.3	11
45	Two-Dimensional Hallmark of Highly Interconnected Three-Dimensional Nanoporous Graphene. ACS Omega, 2017, 2, 3691-3697.	1.6	32
46	A long-range ordered array of copper tetrameric units embedded in an on-surface metal organic framework. Journal of Chemical Physics, 2017, 147, 214706.	1.2	6
47	Tognolini etÂal. Reply:. Physical Review Letters, 2016, 117, 239702.	2.9	2
48	In-vacuum thermolysis of ethane 1,2-diamineborane for the synthesis of ternary borocarbonitrides. Nanotechnology, 2016, 27, 435601.	1.3	17
49	Measurement of \hat{l}_s 13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques. Journal of High Energy Physics, 2016, 2016, 1.	1.6	46
50	Effect of substrate polishing on the growth of graphene on 3C–SiC(111)/Si(111) by high temperature annealing. Nanotechnology, 2016, 27, 185601.	1.3	7
51	Electronic Structure Evolution during the Growth of Graphene Nanoribbons on Au(110). Journal of Physical Chemistry C, 2016, 120, 7323-7331.	1.5	16
52	Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments. Physical Review D, 2015, 92, .	1.6	24
53	Rashba Spin-Orbit Coupling in Image Potential States. Physical Review Letters, 2015, 115, 046801.	2.9	22
54	Missing energy and the measurement of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> -violating phase in neutrino oscillations. Physical Review D, 2015, 92, .	1.6	22

#	Article	IF	CITATIONS
55	Graphene nanoribbons synthesized from molecular precursor polymerization on Au(110). AIP Conference Proceedings, 2015, , .	0.3	2
56	Synthesis of Ternary Borocarbonitrides by High Temperature Pyrolysis of Ethane 1,2-Diamineborane. Materials, 2015, 8, 5974-5985.	1.3	13
57	Surface-Assisted Reactions toward Formation of Graphene Nanoribbons on Au(110) Surface. Journal of Physical Chemistry C, 2015, 119, 2427-2437.	1.5	57
58	Graphene-Induced Magnetic Anisotropy of a Two-Dimensional Iron Phthalocyanine Network. Journal of Physical Chemistry Letters, 2015, 6, 1690-1695.	2.1	25
59	Photoemission Spectroscopy: Fundamental Aspects. , 2015, , 275-317.		1
60	Thermal stability and reduction of iron oxide nanowires at moderate temperatures. Beilstein Journal of Nanotechnology, 2014, 5, 323-328.	1.5	7
61	Preface: Nanoforum 2013. , 2014, , .		0
62	Fe2O3 nanowires on HOPG as precursor of new carbon-based anode for high-capacity lithium ion batteries. , 2014 , , .		1
63	Reduction phases of thin iron-oxide nanowires upon thermal treatment and Li exposure. Journal of Applied Physics, 2014, 115, .	1.1	0
64	Numerical implementation of lepton-nucleus interactions and its effect on neutrino oscillation analysis. Physical Review D, 2014, 90, .	1.6	20
65	Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy. Journal of Chemical Physics, 2014, 140, 244704.	1.2	43
66	Ortho-positronium observation in the Double Chooz experiment. Journal of High Energy Physics, 2014, 2014, 1.	1.6	8
67	Improved measurements of the neutrino mixing angle \hat{l}_s 13 with the Double Chooz detector. Journal of High Energy Physics, 2014, 2014, 1.	1.6	181
68	Interaction of iron phthalocyanine with the graphene/Ni(111) system. Beilstein Journal of Nanotechnology, 2014, 5, 308-312.	1.5	22
69	Electrochemical characteristics of iron oxide nanowires during lithium-promoted conversion reaction. Journal of Power Sources, 2014, 256, 133-136.	4.0	24
70	An Advanced Lithium-lon Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Letters, 2014, 14, 4901-4906.	4.5	402
71	The benefit of the European User Community from transnational access to national radiation facilities. Journal of Synchrotron Radiation, 2014, 21, 638-639.	1.0	2
72	Energetics and Hierarchical Interactions of Metal–Phthalocyanines Adsorbed on Graphene/Ir(111). Langmuir, 2013, 29, 10440-10447.	1.6	43

#	Article	IF	Citations
73	Graphene-Induced Substrate Decoupling and Ideal Doping of a Self-Assembled Iron-phthalocyanine Single Layer. Journal of Physical Chemistry C, 2013, 117, 3019-3027.	1.5	71
74	Charge transfer between isomer domains on n+-doped Si(111)-2 $\tilde{A}-1$: energetic stabilization. Journal of Physics Condensed Matter, 2012, 24, 354009.	0.7	5
75	Molecule-Driven Substrate Reconstruction in the Two-Dimensional Self-Organization of Fe-Phthalocyanines on Au(110). Journal of Physical Chemistry C, 2012, 116, 6251-6258.	1.5	38
76	Formation of Hybrid Electronic States in FePc Chains Mediated by the Au(110) Surface. Journal of Physical Chemistry C, 2012, 116, 8657-8663.	1.5	20
77	Structural Phases of Ordered FePc-Nanochains Self-Assembled on Au(110). Langmuir, 2012, 28, 13232-13240.	1.6	26
78	Nonenzymatic Ligation of an RNA Oligonucleotide Analyzed by Atomic Force Microscopy. Journal of Physical Chemistry B, 2011, 115, 6296-6303.	1.2	10
79	Potassium-doped FePc thin-film on metal surfaces: observation of different empty state occupation. Journal of Nanoparticle Research, 2011, 13, 5967-5973.	0.8	6
80	Metal-phthalocyanine array on the moir \tilde{A} pattern of a graphene sheet. Journal of Nanoparticle Research, 2011, 13, 6013-6020.	0.8	33
81	Coexistence of Negatively and Positively Buckled Isomers onn+-DopedSi(111)â^2×1. Physical Review Letters, 2011, 106, 067601.	2.9	27
82	Metal-phthalocyanine chains on the Au(110) surface: Interaction states versus < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mi>d-metal states occupancy. Physical Review B, 2010, 81, .	1.1	90
83	Localized and Dispersive Electronic States at Ordered FePc and CoPc Chains on Au(110). Journal of Physical Chemistry C, 2010, 114, 21638-21644.	1.5	91
84	Control of Electron Injection Barrier by Electron Doping of Metal Phthalocyanines. Journal of Physical Chemistry C, 2010, 114, 12258-12264.	1.5	27
85	Filling empty states in a CuPc single layer on the Au(110) surface via electron injection. Physical Review B, 2009, 79, .	1.1	38
86	Characterization of benzenethiolate self-assembled monolayer on Cu(100) by XPS and NEXAFS. Journal of Electron Spectroscopy and Related Phenomena, 2009, 172, 64-68.	0.8	25
87	Electronic states of CuPc chains on the Au(110) surface. Journal of Chemical Physics, 2009, 131, 174710.	1.2	58
88	Dispersion of surface bands and chain coupling at Si and Ge(111) surfaces. Surface Science, 2008, 602, 1423-1427.	0.8	3
89	The local adsorption geometry of benzenethiolate on Cu(100). Surface Science, 2008, 602, 2453-2462.	0.8	16
90	Defect-induced states in the electronic structure of a Cu(100)-benzenethiolate-pentacene heterostructure. Journal of Applied Physics, 2008, 104, 063720.	1.1	3

#	Article	IF	Citations
91	Interaction strength and molecular orientation of a single layer of pentacene in organic-metal interface and organic-organic heterostructure. Physical Review B, 2008, 77, .	1.1	33
92	Barrier Formation at Organic Interfaces in a $Cu(100)$ -benzenethiolate-pentacene Heterostructure. Physical Review Letters, 2008, 100, 027601.	2.9	66
93	Insulating state of electron-doped Cu-phthalocyanine layers. Physical Review B, 2007, 76, .	1.1	15
94	Symmetry lowering of pentacene molecular states interacting with a Cu surface. Physical Review B, 2007, 76, .	1.1	26
95	Electronic States of a Single Layer of Pentacene:  Standing-Up and Flat-Lying Configurations. Journal of Physical Chemistry A, 2007, 111, 12454-12457.	1.1	33
96	Pentacene Grown on Self-Assembled Monolayer:  Adsorption Energy, Interface Dipole, and Electronic Properties. Journal of Physical Chemistry C, 2007, 111, 286-293.	1.5	29
97	Anchoring sulphur-headgroup organic molecules at Cu(100): Tailoring the interface electronic states. Surface Science, 2007, 601, 2580-2583.	0.8	1
98	Molecular gap and energy level diagram for pentacene adsorbed on filled d-band metal surfaces. Applied Physics Letters, 2006, 89, 152119.	1.5	30
99	Adsorption of pentacene on filled d-band metal surfaces: Long-range ordering and adsorption energy. Journal of Chemical Physics, 2006, 124, 154702.	1.2	38
100	Growth of long range ordered pentacene/benzenethiol/Cu(100) heterostructure. European Physical Journal Special Topics, 2006, 132, 301-305.	0.2	5
101	Anchoring methane thiol on $Cu(100)$ in different structural configurations: Electronic state dispersion. Physical Review B, 2006, 74, .	1.1	12
102	Valence band and In-4d core level photoemission study of de-capped and ion-bombarded-annealed InAs(001) epitaxial surfaces. Surface Science, 2005, 576, 123-130.	0.8	11
103	The evolution of benzenethiol self-assembled monolayer on the Cu(100) surface. Surface Science, 2005, 598, 218-225.	0.8	34
104	Self-assembly of an aromatic thiolate on Cu(100): The local adsorption site. Surface Science, 2005, 598, 253-262.	0.8	15
105	Molecular orientation of 2-mercaptobenzoxazole adsorbed on Cu(100) surface. Surface Science, 2005, 578, 136-141.	0.8	13
106	Photoemission and Low-Energy Electron-Diffraction Studies of α-Sn Growth on InSb Surfaces. Physica Scripta, 2005, 71, 652-655.	1.2	0
107	Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: Experiment and theory. Journal of Chemical Physics, 2005, 122, 124305.	1.2	83
108	Anchoring of Organic Molecules on Cu(001) Surface Through S-Headgroup Materials Research Society Symposia Proceedings, 2005, 872, 1.	0.1	0

#	Article	IF	CITATIONS
109	Effect of Humidity on the Supramolecular Structure of Cotton, Studied by Quantitative Spin Probing. Journal of Physical Chemistry B, 2005, 109, 11572-11579.	1.2	22
110	Au(110) induced reconstruction by π conjugated molecules adsorption investigated by photoemission spectroscopy and low energy electron diffraction. Surface Science, 2004, 566-568, 79-83.	0.8	27
111	Surface-science approach to the study of mercaptobenzoxazole on Cu(100). Surface Science, 2004, 566-568, 579-584.	0.8	3
112	Electronic structure of methanethiolate self-assembled on the Cu(100) surface. Surface Science, 2004, 566-568, 591-596.	0.8	12
113	Electronic structure of long-range ordered pentacene structures on the stepped Cu(119) surface. Surface Science, 2004, 566-568, 613-617.	0.8	18
114	Quasi–one-dimensional electronic state of alkali metal chains assembled on the InAs(110) surface. Europhysics Letters, 2004, 68, 254-260.	0.7	0
115	Growth morphology and electronic structure of 2D ordered pentacene on the Au()-($1\tilde{A}$ –2) surface. Surface Science, 2003, 532-535, 249-254.	0.8	46
116	CuPc molecules adsorbed on Au(110)-($1\tilde{A}$ —2): growth morphology and evolution of valence band states. Surface Science, 2003, 531, 123-130.	0.8	42
117	HREELS study of the adsorption mechanism and orientational order of 2-mercaptobenzoxazole on Cu(100). Surface Science, 2003, 539, 63-71.	0.8	21
118	Pentacene self-aggregation at the Au(110)-($1\tilde{A}$ –2) surface: growth morphology and interface electronic states. Thin Solid Films, 2003, 428, 227-231.	0.8	49
119	Photoemission investigation of the alkali-metal-induced two-dimensional electron gas at the Si(111)(1 $ ilde{A}$ —1):Hsurface. Physical Review B, 2003, 67, .	1.1	5
120	Cu(100) surface:â€,â€,High-resolution experimental and theoretical band mapping. Physical Review B, 2003, 68, .	1.1	37
121	Electronic band states of long-range ordered aromatic thione molecules assembled on Cu(100). Physical Review B, 2002, 66, .	1.1	28
122	Growth of 2-mercaptobenzoxazole on Cu() surface: chemisorbed and physisorbed phases. Surface Science, 2002, 507-510, 7-11.	0.8	15
123	Growth morphology of (1×2) α-Sn(100): a surface diffraction study. Surface Science, 2002, 507-510, 335-339.	0.8	3
124	Sn on lnSb(100)–c(2×8): growth morphology and electronic structure. Journal of Electron Spectroscopy and Related Phenomena, 2002, 127, 29-35.	0.8	7
125	Adsorption sites at Cs nanowires grown on the InAs(110) surface. Surface Science, 2001, 477, 35-42.	0.8	12
126	Substrate reconstruction and electronic surface states: Ag(001). Surface Science, 2001, 486, 65-72.	0.8	20

#	Article	IF	CITATIONS
127	Single-particle and collective excitations of a two-dimensional electron gas at the Cs/InAs(110) surface. Physical Review B, 2001, 64, .	1.1	5
128	Density of states of a two-dimensional electron gas at semiconductor surfaces. Physical Review B, 2001, 63, .	1.1	45
129	Occupied surface-state bands of the $(1\tilde{A}-2)$ ordered phase of Bi/InAs(110). Journal of Physics Condensed Matter, 2000, 12, 7721-7726.	0.7	3
130	Metal-induced gap states at InAs(110) surface. Surface Science, 2000, 454-456, 539-542.	0.8	10
131	The pseudomorphic growth of \hat{l}_{\pm} -Sn on InSb(100): electronic structure and morphological properties. Surface Science, 2000, 454-456, 807-810.	0.8	5
132	A high-resolution photoemission study of confined metal systems on InAs(110). Surface Science, 2000, 454-456, 417-427.	0.8	4
133	\hat{l}_{\pm} -Sn pseudomorphic growth on InSb (111) and () surfaces: a high-resolution photoemission study. Surface Science, 2000, 463, 174-182.	0.8	20
134	Evolution of one-dimensional Cs chains on InAs(110) as determined by scanning-tunneling microscopy and core-level spectroscopy. Surface Science, 2000, 447, 133-142.	0.8	27
135	A high-resolution spectroscopy study on bidimensional ordered structures: the (1 \tilde{A} — 1) and (1 \tilde{A} — 2) phases of Bi/InAs(110). Journal of Physics Condensed Matter, 1999, 11, 7447-7461.	0.7	5
136	Diffraction analysis of a disordered surface, modelled on a probability distribution of reconstructed blocks: ,n= 6.45. Journal of Physics Condensed Matter, 1999, 11, 1935-1951.	0.7	5
137	(1×2)Bi chain reconstruction on the InAs(110) surface. Physical Review B, 1999, 59, 15760-15765.	1.1	12
138	Density of states of a two-dimensional electron gas measured by high-resolution photoelectron spectroscopy. Solid State Communications, 1999, 110, 661-666.	0.9	15
139	Structure and missing-dimer probability distribution of the (2×n) Bi-induced Si(001) surface. Surface Science, 1999, 433-435, 367-372.	0.8	4
140	Growth morphology and electronic properties of Sn deposited on different InSb surfaces. Surface Science, 1999, 433-435, 387-391.	0.8	7
141	Core-level photoemission study of 2D ordered Bi/Si(100) interfaces. Surface Science, 1999, 430, 126-136.	0.8	7
142	Electronic properties of the Bi/Si(100) interface. Surface Science, 1998, 409, 207-212.	0.8	6
143	Alkali metal/GaAs(110) interfaces: correlation effects and sub-gap electron energy loss spectra. Surface Science, 1998, 409, 258-264.	0.8	16
144	Bismuth-induced restructuring of the GaSb(110) surface. Physical Review B, 1998, 57, 3749-3752.	1.1	14

#	Article	IF	CITATIONS
145	Gap-state formation in two-dimensional ordered Bi layers on InAs(110). Physical Review B, 1998, 58, R4231-R4234.	1.1	13
146	Antimony adsorption on InAs(110). Physical Review B, 1998, 57, 4544-4551.	1.1	7
147	2D cesium insulating layer deposited on Sb-precovered GaAs(110) surface. Surface Science, 1997, 377-379, 210-214.	0.8	0
148	Electronic properties of (2 \tilde{A} — n)-Bi reconstructions on Si(100). Surface Science, 1997, 377-379, 215-219.	0.8	7
149	Dynamics of the Si(100) surface. Surface Science, 1997, 377-379, 360-364.	0.8	12
150	Surface modification of InAs(110) surface by low energy ion sputtering. Surface Science, 1997, 391, 73-80.	0.8	16
151	Exposures. Physica Status Solidi A, 1997, 159, 205-212.	1.7	3
152	Dynamics-Induced Surface Metallization of Si(100). Physical Review Letters, 1996, 77, 3869-3872.	2.9	44
153	Cesium-induced electronic states and space-charge-layer formation in Cs/InSb(110) interface. Physical Review B, 1996, 53, 13605-13612.	1.1	21
154	Surface electronic structure at $Si(100)$ - $(2x1)$. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 541-545.	0.8	10
155	Space charge layer at interfaces. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 459-463.	0.8	0
156	Electronic properties of (1xn)-reconstructed interfaces. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 465-469.	0.8	4
157	Overlayer growth and electronic properties of the Bi/GaSb(110) interface. Physical Review B, 1995, 51, 16822-16831.	1.1	10
158	Quasi-Two-Dimensional Electron Gas at Submonolayer Coverages of Cs on InSb(110). Europhysics Letters, 1995, 32, 235-240.	0.7	14
159	Bismuth-induced electronic states at (2 \tilde{A} — 1)-Bi/III-V(110) interfaces. Surface Science, 1995, 331-333, 496-500.	0.8	5
160	Space-charge layer, metallization, and collective excitations of the Bi/GaAs(110) interface. Physical Review B, 1994, 49, 8198-8205.	1.1	8
161	Epitaxial continued-layer structure of Sb on GaAs(110) as observed by grazing-incidence x-ray diffraction. Physical Review B, 1994, 50, 14336-14339.	1.1	23
162	Bismuth on GaSb(110): Electronic and dielectric properties. Physical Review B, 1994, 49, 2911-2914.	1.1	11

#	Article	IF	CITATIONS
163	Structural analysis of the (1×1)-Bi/GaAs(110) interface. Physical Review B, 1994, 50, 8004-8007.	1.1	10
164	Interaction of InP(110) with atomic hydrogen: a stretching mode investigation. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 491-497.	0.8	10
165	Electronic and dielectric properties of Bi grown on GaAs(110). Surface Science, 1993, 287-288, 550-553.	0.8	2
166	Vibrational and electronic properties of FePS3 studied by HREELS and EELS. Surface Science, 1993, 281, 127-132.	0.8	1
167	HREELS investigation of hydrogenated GaAs(110) surfaces. Journal of Physics Condensed Matter, 1993, 5, 6613-6622.	0.7	18
168	Quantum size effects and temperature dependence of low-energy electronic excitations in thin Bi crystals. Physical Review B, 1993, 48, 4767-4776.	1.1	25
169	One-dimensional â€~â€~dislocation-related'' electronic states at the GaAs(110)-Bi(1×1) interface. Physica Review Letters, 1992, 68, 986-989.	al 2.9	15
170	Bismuth and antimony on GaAs(110): Dielectric and electronic properties. Physical Review B, 1992, 45, 14057-14064.	1.1	26
171	Hole-plasmon damping on heavily dopedp-type GaAs(110). Physical Review B, 1992, 46, 2467-2472.	1.1	11
172	Vibrational and collective excitations of the Cs/GaAs(110) interface. Physical Review B, 1992, 46, 6955-6960.	1.1	7
173	Investigation of the plasmon excitation on heavily doped p-type GaAs(110) surface. Applied Surface Science, 1992, 56-58, 44-49.	3.1	8
174	Bi-induced electronic states at the interface with n- and p-type GaAs(110). Applied Surface Science, 1992, 56-58, 242-246.	3.1	5
175	Vibrational and collective excitations in the Bi/GaAs(110) system. Applied Surface Science, 1992, 56-58, 247-251.	3.1	3
176	Antimony induced states in Sb/InP(110) and Sb/GaAs(110) interfaces studied by high resolution electron energy loss spectroscopy. Surface Science, 1991, 251-252, 209-212.	0.8	6
177	Antimony chemisorption onto GaAs(110) studied by high resolution electron energy loss spectroscopy. Surface Science, 1991, 251-252, 218-222.	0.8	3
178	HREELS investigation of the first stage of interaction of atomic hydrogen with GaAs(1 1 0) surfaces. Physica B: Condensed Matter, 1991, 170, 487-491.	1.3	12
179	Core level electron energy loss study of the PD-SI(111)2 $\tilde{A}-1$ Interface Formation. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1991, 13, 203-210.	0.4	O
180	Antimony-induced electronic states in the Sb/InP(110) interface studied by high-resolution electron-energy-loss spectroscopy. Physical Review B, 1991, 43, 14317-14320.	1.1	11

#	Article	IF	CITATIONS
181	Characterization of bioacceptable carbon materials. Clinical Materials, 1990, 5, 127-137.	0.5	О
182	Vibrational structure of Sb/III-V compound semiconductors interfaces. Journal of Electron Spectroscopy and Related Phenomena, 1990, 54-55, 1105-1114.	0.8	7
183	High resolution electron energy loss spectroscopy study of the SbGaAs(110) system. Vacuum, 1990, 41, 695-698.	1.6	4
184	Inelastic electron scattering investigation of the Sb/GaAs(110) system. Physical Review B, 1990, 41, 11978-11991.	1.1	29
185	Azimuthal dependence of the vibrational excitation in Si(111)-($2\tilde{A}$ -1). Physical Review B, 1989, 39, 10380-10383.	1.1	16
186	Observation of a new mode in the energy-loss spectrum of the Sb/GaAs(110) system. Physical Review B, 1989, 40, 8095-8098.	1.1	12
187	Investigation of the bulk band structure of IV-VI compound semiconductors: PbSe and PbTe. Physical Review B, 1989, 40, 5549-5556.	1.1	40
188	Collective and vibrational excitations on then-doped GaAs(110) surface. Physical Review B, 1989, 39, 5887-5891.	1.1	31
189	Surface phonons and plasmons of GaAs(110) investigated by high resolution electron energy loss spectroscopy. Surface Science, 1989, 211-212, 557-564.	0.8	17
190	Electronic and vibrational properties of the K/GaAs system. Surface Science, 1989, 211-212, 659-665.	0.8	8
191	Azimuthal dependence of the electronic excitations in GaAs(110). Surface Science, 1988, 207, 133-141.	0.8	25
192	Photoabsorption Spectroscopy of CrSi 2 : An Investigation of Unoccupied States. Europhysics Letters, 1988, 5, 283-286.	0.7	2
193	Empty states investigation of Ni2Si by photon absorption spectroscopy. Physica Scripta, 1987, 36, 153-155.	1.2	7
194	Atomic Effects in the Auger and Absorption Spectra Involving the M2,3 Levels in Cr and Cr-Compounds. Physica Scripta, 1987, 35, 54-56.	1.2	11
195	Adsorption of monovalent metals on the GaAs(110) surface. Surface Science, 1987, 189-190, 226-231.	0.8	10
196	High resolution electron energy loss investigation of the azimuthal dependence of the $Si(111)(2\tilde{A}-1)$ surface excitations. Surface Science, 1987, 189-190, 689-694.	0.8	11
197	Electron energyâ€loss spectroscopy investigation of core levels and valence excitations of Pd2Si. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 1474-1478.	0.9	4
198	Electron energy loss spectroscopic investigation of Cr-L2,3 core levels in Cr and chromium silicides. Solid State Communications, 1987, 61, 5-7.	0.9	7

#	Article	IF	Citations
199	Local structure of Ni2Si. Journal of Electron Spectroscopy and Related Phenomena, 1987, 42, 287-292.	0.8	1
200	Electron energy-loss spectroscopy of Ni2Si: Valence collective excitation and structural properties. Surface Science, 1986, 168, 204-211.	0.8	8
201	Core and valence excitations in Ni2Si. Thin Solid Films, 1986, 140, 99-104.	0.8	1
202	Azimuthal dependence of reflection high resolution electron energy loss of $Si(111)(2\tilde{A}-1)$. Solid State Communications, 1986, 60, 337-341.	0.9	27
203	L2,3absorption edges inNi2Si. Physical Review B, 1986, 34, 2875-2877.	1.1	17
204	Screening effects in photoemission from weakly bound adsorbates: CO on Ag(110). Surface Science, 1984, 138, 305-318.	0.8	84
205	Kinetics of carbidic carbon formation from CO in the 10\$minus;6-torr range on Ni(110). Journal of Catalysis, 1983, 83, 19-24.	3.1	51
206	Oxygen adsorption on Ag(110): observation of a precursor state. Vacuum, 1983, 33, 867.	1.6	16
207	On the use of the Auger technique for quantitative analysis of overlayers. Thin Solid Films, 1983, 109, 159-167.	0.8	65
208	Observation of carbidic and graphitic carbon formation from CO in the 10â^'5 torr range on Ru(101). Surface Science Letters, 1983, 128, L209-L212.	0.1	0
209	Layer-dependent shifts in ionization potential and auger energies for Kr/Cu (110). Solid State Communications, 1983, 46, 713-716.	0.9	9
210	Orientation of water adsorbed on Cu(110). Surface Science, 1983, 126, 279-285.	0.8	52
211	Thermoreflectance test of W, Mo, and paramagnetic Cr band structures. Physical Review B, 1983, 27, 4684-4693.	1.1	35
212	Photoemission studies of the commensurate-incommensurate transition in the system Xe-Cu(110). Physical Review B, 1982, 25, 7798-7806.	1.1	51
213	Temperature-Dependent Photoemission Line Shapes of Physisorbed Xenon. Physical Review Letters, 1982, 48, 1288-1291.	2.9	52
214	Krypton and argon on Cu(110): Geometric and electronic structure. Surface Science, 1982, 117, 376-386.	0.8	30
215	On the origin of satellite peaks in valence photoemission from CO ON Cu(110). Chemical Physics Letters, 1982, 93, 308-313.	1.2	26
216	tâ^'d excitons in the optical spectrum of semiconducting SmS and Sm1â^'xGdx alloys. Solid State Communications, 1981, 38, 833-836.	0.9	4

#	Article	IF	CITATIONS
217	2D MoS 2 Heterostructures on Epitaxial and Selfâ€Standing Graphene for Energy Storage: From Growth Mechanism to Application. Advanced Materials Technologies, 0, , 2100963.	3.0	1