Paolo Radice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/621372/publications.pdf Version: 2024-02-01

		8181	6836
306	28,308	76	155
papers	citations	h-index	g-index
323	323	323	26239
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Breast and Prostate Cancer Risks for Male <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variant Carriers Using Polygenic Risk Scores. Journal of the National Cancer Institute, 2022, 114, 109-122.	6.3	19
2	Risks of breast and ovarian cancer for women harboring pathogenic missense variants in BRCA1 and BRCA2 compared with those harboring protein truncating variants. Genetics in Medicine, 2022, 24, 119-129.	2.4	10
3	Polygenic risk modeling for prediction of epithelial ovarian cancer risk. European Journal of Human Genetics, 2022, 30, 349-362.	2.8	23
4	Common variants in breast cancer risk loci predispose to distinct tumor subtypes. Breast Cancer Research, 2022, 24, 2.	5.0	15
5	Pathology of Tumors Associated With Pathogenic Germline Variants in 9 Breast Cancer Susceptibility Genes. JAMA Oncology, 2022, 8, e216744.	7.1	51
6	The Impact of Mediterranean Dietary Intervention on Metabolic and Hormonal Parameters According to BRCA1/2 Variant Type. Frontiers in Genetics, 2022, 13, 820878.	2.3	2
7	Breast cancer risks associated with missense variants in breast cancer susceptibility genes. Genome Medicine, 2022, 14, 51.	8.2	19
8	Analysis of the mutational status of SIX1/2 and microRNA processing genes in paired primary and relapsed Wilms tumors and association with relapse. Cancer Gene Therapy, 2021, 28, 1016-1024.	4.6	9
9	Functional evidence (I)Âtranscripts and RNA-splicing outline. , 2021, , 121-144.		0
10	A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nature Communications, 2021, 12, 1078.	12.8	19
11	Breast Cancer Risk Genes — Association Analysis in More than 113,000 Women. New England Journal of Medicine, 2021, 384, 428-439.	27.0	532
12	Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?. Cancers, 2021, 13, 2370.	3.7	4
13	Malignant salivary gland tumours in families with breast cancer susceptibility. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 479, 221-226.	2.8	0
14	Pleiotropy-guided transcriptome imputation from normal and tumor tissues identifies candidate susceptibility genes for breast and ovarian cancer. Human Genetics and Genomics Advances, 2021, 2, 100042.	1.7	6
15	The predictive ability of the 313 variant–based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant. Genetics in Medicine, 2021, 23, 1726-1737.	2.4	16
16	OCT Biomarkers in Neovascular Age-Related Macular Degeneration: A Narrative Review. Journal of Ophthalmology, 2021, 2021, 1-16.	1.3	21
17	Altered regulation of <i>BRCA1</i> exon 11 splicing is associated with breast cancer risk in carriers of <i>BRCA1</i> pathogenic variants. Human Mutation, 2021, 42, 1488-1502.	2.5	7
18	Mendelian randomisation study of smoking exposure in relation to breast cancer risk. British Journal of Cancer, 2021, 125, 1135-1145.	6.4	9

#	Article	IF	CITATIONS
19	Analysis of Italian BRCA1/2 Pathogenic Variants Identifies a Private Spectrum in the Population from the Bergamo Province in Northern Italy. Cancers, 2021, 13, 532.	3.7	8
20	Association of Genomic Domains in <i>BRCA1</i> and <i>BRCA2</i> with Prostate Cancer Risk and Aggressiveness. Cancer Research, 2020, 80, 624-638.	0.9	39
21	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120
22	Cancer Risks Associated With Germline <i>PALB2</i> Pathogenic Variants: An International Study of 524 Families. Journal of Clinical Oncology, 2020, 38, 674-685.	1.6	270
23	Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genetics in Medicine, 2020, 22, 1653-1666.	2.4	82
24	BRCA1/2 Variants and Metabolic Factors: Results From a Cohort of Italian Female Carriers. Cancers, 2020, 12, 3584.	3.7	2
25	Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk. American Journal of Human Genetics, 2020, 107, 837-848.	6.2	39
26	Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature Genetics, 2020, 52, 572-581.	21.4	265
27	Characterization of the Cancer Spectrum in Men With Germline <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. JAMA Oncology, 2020, 6, 1218.	7.1	48
28	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	1.3	32
29	The Spectrum of FANCM Protein Truncating Variants in European Breast Cancer Cases. Cancers, 2020, 12, 292.	3.7	11
30	BRCA1/2 Molecular Assay for Ovarian Cancer Patients: A Survey through Italian Departments of Oncology and Molecular and Genomic Diagnostic Laboratories. Diagnostics, 2019, 9, 146.	2.6	3
31	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	5.2	28
32	Two truncating variants in FANCC and breast cancer risk. Scientific Reports, 2019, 9, 12524.	3.3	5
33	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	12.8	88
34	GFP-Fragment Reassembly Screens for the Functional Characterization of Variants of Uncertain Significance in Protein Interaction Domains of the BRCA1 and BRCA2 Genes. Cancers, 2019, 11, 151.	3.7	4
35	Recommendations for the implementation of BRCA testing in ovarian cancer patients and their relatives. Critical Reviews in Oncology/Hematology, 2019, 140, 67-72.	4.4	51
36	Large scale multifactorial likelihood quantitative analysis of <i>BRCA1</i> and <i>BRCA2</i> variants: An ENIGMA resource to support clinical variant classification. Human Mutation, 2019, 40, 1557-1578.	2.5	102

#	Article	IF	CITATIONS
37	Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BRCA1 and BRCA2 mutation carriers. British Journal of Cancer, 2019, 121, 180-192.	6.4	19
38	Towards controlled terminology for reporting germline cancer susceptibility variants: an ENIGMA report. Journal of Medical Genetics, 2019, 56, 347-357.	3.2	32
39	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	12.8	90
40	Usefulness and Limitations of Comprehensive Characterization of mRNA Splicing Profiles in the Definition of the Clinical Relevance of BRCA1/2 Variants of Uncertain Significance. Cancers, 2019, 11, 295.	3.7	24
41	Genome-wide association study of germline variants and breast cancer-specific mortality. British Journal of Cancer, 2019, 120, 647-657.	6.4	52
42	The association between weight at birth and breast cancer risk revisited using Mendelian randomisation. European Journal of Epidemiology, 2019, 34, 591-600.	5.7	16
43	Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. American Journal of Human Genetics, 2019, 104, 21-34.	6.2	711
44	Insight into genetic susceptibility to male breast cancer by multigene panel testing: Results from a multicenter study in Italy. International Journal of Cancer, 2019, 145, 390-400.	5.1	40
45	Height and Body Mass Index as Modifiers of Breast Cancer Risk in <i>BRCA1</i> / <i>2</i> Mutation Carriers: A Mendelian Randomization Study. Journal of the National Cancer Institute, 2019, 111, 350-364.	6.3	30
46	Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis. International Journal of Epidemiology, 2019, 48, 795-806.	1.9	81
47	Evaluation of CYP17A1 and CYP1B1 polymorphisms in male breast cancer risk. Endocrine Connections, 2019, 8, 1224-1229.	1.9	6
48	The <i>BRCA2</i> c.68-7TÂ>ÂA variant is not pathogenic: A model for clinical calibration of spliceogenicity. Human Mutation, 2018, 39, 729-741.	2.5	19
49	Decapping protein EDC4 regulates DNA repair and phenocopies BRCA1. Nature Communications, 2018, 9, 967.	12.8	33
50	Mutational spectrum in a worldwide study of 29,700 families with <i>BRCA1</i> or <i>BRCA2</i> mutations. Human Mutation, 2018, 39, 593-620.	2.5	224
51	Survey of gynecological carcinosarcomas in families with breast and ovarian cancer predisposition. Cancer Genetics, 2018, 221, 38-45.	0.4	4
52	A possible role of FANCM mutations in male breast cancer susceptibility: Results from a multicenter study in Italy. Breast, 2018, 38, 92-97.	2.2	23
53	Individuals with FANCM biallelic mutations do not develop Fanconi anemia, but show risk for breast cancer, chemotherapy toxicity and may display chromosome fragility. Genetics in Medicine, 2018, 20, 452-457.	2.4	59
54	Contribution of MUTYH Variants to Male Breast Cancer Risk: Results From a Multicenter Study in Italy. Frontiers in Oncology, 2018, 8, 583.	2.8	25

#	Article	IF	CITATIONS
55	Two Missense Variants Detected in Breast Cancer Probands Preventing BRCA2-PALB2 Protein Interaction. Frontiers in Oncology, 2018, 8, 480.	2.8	11
56	<i>BRCA1</i> and <i>BRCA2</i> 5′ noncoding region variants identified in breast cancer patients alter promoter activity and protein binding. Human Mutation, 2018, 39, 2025-2039.	2.5	15
57	A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nature Genetics, 2018, 50, 968-978.	21.4	184
58	Genetic and epigenetic analyses guided by high resolution whole-genome SNP array reveals a possible role of <i>CHEK2</i> in Wilms tumour susceptibility. Oncotarget, 2018, 9, 34079-34089.	1.8	25
59	Evaluation of copy-number variants as modifiers of breast and ovarian cancer risk for BRCA1 pathogenic variant carriers. European Journal of Human Genetics, 2017, 25, 432-438.	2.8	26
60	<i>BRCA2</i> Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Research, 2017, 77, 2789-2799.	0.9	75
61	Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature Genetics, 2017, 49, 834-841.	21.4	426
62	ldentification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	21.4	356
63	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	27.8	1,099
64	ldentification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	21.4	289
65	Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3. Breast Cancer Research and Treatment, 2017, 161, 117-134.	2.5	18
66	Wholeâ€exome sequencing and targeted gene sequencing provide insights into the role of <i>PALB2</i> as a male breast cancer susceptibility gene. Cancer, 2017, 123, 210-218.	4.1	31
67	Body mass index and breast cancer survival: a Mendelian randomization analysis. International Journal of Epidemiology, 2017, 46, 1814-1822.	1.9	45
68	Prediction of Breast and Prostate Cancer Risks in Male <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers Using Polygenic Risk Scores. Journal of Clinical Oncology, 2017, 35, 2240-2250.	1.6	152
69	<i>PHIP</i> - a novel candidate breast cancer susceptibility locus on 6q14.1. Oncotarget, 2017, 8, 102769-102782.	1.8	9
70	A Targeted Approach to Genetic Counseling in Breast Cancer Patients: The Experience of an Italian Local Project. Tumori, 2016, 102, 45-50.	1.1	4
71	Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21. Oncotarget, 2016, 7, 80140-80163.	1.8	31
72	Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS ONE, 2016, 11, e0158801.	2.5	10

#	Article	IF	CITATIONS
73	Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus. PLoS ONE, 2016, 11, e0160316.	2.5	12
74	Recommendations for the implementation of <i>BRCA</i> testing in the care and treatment pathways of ovarian cancer patients. Future Oncology, 2016, 12, 2071-2075.	2.4	21
75	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	3.2	174
76	Naturally occurring <i>BRCA2</i> alternative mRNA splicing events in clinically relevant samples. Journal of Medical Genetics, 2016, 53, 548-558.	3.2	69
77	Response: Table 1 Journal of the National Cancer Institute, 2016, 108, djw173.	6.3	2
78	Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Research, 2016, 18, 64.	5.0	31
79	Mutation detection rates associated with specific selection criteria for BRCA1/2 testing in 1854 high-risk families: A monocentric Italian study. European Journal of Internal Medicine, 2016, 32, 65-71.	2.2	21
80	Genetic predisposition to ductal carcinoma in situ of the breast. Breast Cancer Research, 2016, 18, 22.	5.0	43
81	Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2016, 18, 15.	5.0	88
82	Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation. American Journal of Human Genetics, 2016, 99, 903-911.	6.2	59
83	An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Human Molecular Genetics, 2016, 25, 3863-3876.	2.9	33
84	Retina-derived POU domain factor 1 coordinates expression of genes relevant to renal and neuronal development. International Journal of Biochemistry and Cell Biology, 2016, 78, 162-172.	2.8	10
85	rs2735383, located at a microRNA binding site in the 3'UTR of NBS1, is not associated with breast cancer risk. Scientific Reports, 2016, 6, 36874.	3.3	2
86	Haplotype analyses of the c.1027C>T and c.2167_2168delAT recurrent truncating mutations in the breast cancer-predisposing gene PALB2. Breast Cancer Research and Treatment, 2016, 160, 121-129.	2.5	11
87	Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women. Breast Cancer Research, 2016, 18, 112.	5.0	42
88	Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nature Communications, 2016, 7, 11375.	12.8	93
89	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	12.8	78
90	The PALB2 p.Leu939Trp mutation is not associated with breast cancer risk. Breast Cancer Research, 2016, 18, 111.	5.0	11

#	Article	IF	CITATIONS
91	Combined genetic and splicing analysis of BRCA1 c.[594-2A>C; 641A>G] highlights the relevance of naturally occurring in-frame transcripts for developing disease gene variant classification algorithms. Human Molecular Genetics, 2016, 25, 2256-2268.	2.9	106
92	Personalized testing based on polygenic risk score is promising for more efficient population-based screening programs for common oncological diseases. Annals of Oncology, 2016, 27, 369-370.	1.2	5
93	Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nature Genetics, 2016, 48, 374-386.	21.4	125
94	Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility: a pooled analysis of 42,510 cases and 40,577 controls from the Breast Cancer Association Consortium. Human Genetics, 2016, 135, 137-154.	3.8	8
95	BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. Journal of the National Cancer Institute, 2016, 108, djv315.	6.3	77
96	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	1.4	18
97	RAD51B in Familial Breast Cancer. PLoS ONE, 2016, 11, e0153788.	2.5	26
98	Chromosomal anomalies at 1q, 3, 16q, and mutations of <i>SIX1</i> and <i>DROSHA</i> genes underlie Wilms tumor recurrences. Oncotarget, 2016, 7, 8908-8915.	1.8	26
99	An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research, 2015, 17, 61.	5.0	26
100	Common germline polymorphisms associated with breast cancer-specific survival. Breast Cancer Research, 2015, 17, 58.	5.0	26
101	Androgen Receptor CAG Repeat Length and Estrogen Receptor Status in Postmenopausal Breast Cancer Prognosis. International Journal of Biological Markers, 2015, 30, 418-424.	1.8	3
102	Large-Scale Genomic Analyses Link Reproductive Aging to Hypothalamic Signaling, Breast Cancer Susceptibility, and BRCA1-Mediated DNA Repair. Obstetrical and Gynecological Survey, 2015, 70, 758-762.	0.4	0
103	Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers. PLoS ONE, 2015, 10, e0120020.	2.5	34
104	Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants. Journal of the National Cancer Institute, 2015, 107, .	6.3	428
105	Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. Human Molecular Genetics, 2015, 24, 2966-2984.	2.9	40
106	Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1. American Journal of Human Genetics, 2015, 96, 5-20.	6.2	76
107	Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer. Carcinogenesis, 2015, 36, 256-271.	2.8	14
108	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	21.4	221

#	Article	IF	CITATIONS
109	Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 2015, 47, 373-380.	21.4	513
110	Novel and known genetic variants for male breast cancer risk at 8q24.21, 9p21.3, 11q13.3 and 14q24.1: Results from a multicenter study in Italy. European Journal of Cancer, 2015, 51, 2289-2295.	2.8	25
111	<i>FANCM</i> c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor. Human Molecular Genetics, 2015, 24, 5345-5355.	2.9	91
112	Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression. American Journal of Human Genetics, 2015, 97, 22-34.	6.2	37
113	Identification of Novel Genetic Markers of Breast Cancer Survival. Journal of the National Cancer Institute, 2015, 107, .	6.3	56
114	Association of Type and Location of <i>BRCA1</i> and <i>BRCA2</i> Mutations With Risk of Breast and Ovarian Cancer. JAMA - Journal of the American Medical Association, 2015, 313, 1347.	7.4	390
115	Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nature Genetics, 2015, 47, 1294-1303.	21.4	357
116	Height and Breast Cancer Risk: Evidence From Prospective Studies and Mendelian Randomization. Journal of the National Cancer Institute, 2015, 107, djv219.	6.3	99
117	Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1680-1691.	2.5	24
118	Estimate of the penetrance of BRCA mutation and the COS software for the assessment of BRCA mutation probability. Familial Cancer, 2015, 14, 117-128.	1.9	12
119	Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Human Molecular Genetics, 2015, 24, 285-298.	2.9	38
120	Candidate Genetic Modifiers for Breast and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 308-316.	2.5	22
121	Involvement of <i>MBD4</i> inactivation in mismatch repair-deficient tumorigenesis. Oncotarget, 2015, 6, 42892-42904.	1.8	43
122	Association between CASP8 –652 6N Del Polymorphism (rs3834129) and Colorectal Cancer Risk: Results from a Multi-Centric Study. PLoS ONE, 2014, 9, e85538.	2.5	8
123	MicroRNA Related Polymorphisms and Breast Cancer Risk. PLoS ONE, 2014, 9, e109973.	2.5	49
124	Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast. PLoS Genetics, 2014, 10, e1004285.	3.5	39
125	DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS Genetics, 2014, 10, e1004256.	3.5	47
126	Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium. Human Molecular Genetics, 2014, 23, 6096-6111.	2.9	53

#	Article	IF	CITATIONS
127	Risk of desmoid tumours after open and laparoscopic colectomy in patients with familial adenomatous polyposis. British Journal of Surgery, 2014, 101, 558-565.	0.3	60
128	Association of SULT1A1 Arg213His polymorphism with male breast cancer risk: results from a multicenter study in Italy. Breast Cancer Research and Treatment, 2014, 148, 623-628.	2.5	7
129	Refined histopathological predictors of BRCA1 and BRCA2mutation status: a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Research, 2014, 16, 3419.	5.0	97
130	Breast-Cancer Risk in Families With Mutations in PALB2. Obstetrical and Gynecological Survey, 2014, 69, 659-660.	0.4	1
131	Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers. Breast Cancer Research, 2014, 16, 3416.	5.0	57
132	Comprehensive annotation of splice junctions supports pervasive alternative splicing at the BRCA1 locus: a report from the ENIGMA consortium. Human Molecular Genetics, 2014, 23, 3666-3680.	2.9	96
133	PALB2 sequencing in Italian familial breast cancer cases reveals a high-risk mutation recurrent in the province of Bergamo. Genetics in Medicine, 2014, 16, 688-694.	2.4	25
134	A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46 450 cases and 42 461 controls from the breast cancer association consortium. Human Molecular Genetics, 2014, 23, 1934-1946.	2.9	32
135	FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium. British Journal of Cancer, 2014, 110, 1088-1100.	6.4	21
136	Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature, 2014, 514, 92-97.	27.8	548
137	Breast-Cancer Risk in Families with Mutations in <i>PALB2</i> . New England Journal of Medicine, 2014, 371, 497-506.	27.0	745
138	Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nature Communications, 2014, 5, 4999.	12.8	105
139	Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Human Molecular Genetics, 2014, 23, 6034-6046.	2.9	12
140	Comparison of mRNA Splicing Assay Protocols across Multiple Laboratories: Recommendations for Best Practice in Standardized Clinical Testing. Clinical Chemistry, 2014, 60, 341-352.	3.2	95
141	Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: a case-control study. Breast Cancer Research, 2014, 16, R51.	5.0	14
142	Characterization of an Italian Founder Mutation in the RING-Finger Domain of BRCA1. PLoS ONE, 2014, 9, e86924.	2.5	24
143	miR-342 Regulates BRCA1 Expression through Modulation of ID4 in Breast Cancer. PLoS ONE, 2014, 9, e87039.	2.5	59
144	COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration. Breast Cancer Research, 2013, 15, 402.	5.0	36

#	Article	IF	CITATIONS
145	First description of an acinic cell carcinoma of the breast in a BRCA1 mutation carrier: a case report. BMC Cancer, 2013, 13, 46.	2.6	34
146	A Classification Model for <i>BRCA2</i> DNA Binding Domain Missense Variants Based on Homology-Directed Repair Activity. Cancer Research, 2013, 73, 265-275.	0.9	103
147	Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus: Putative Functional Variants Differentially Bind FOXA1 and E2F1. American Journal of Human Genetics, 2013, 93, 1046-1060.	6.2	98
148	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	21.4	493
149	Is Wilms Tumor a Candidate Neoplasia for Treatment with WNT/β-Catenin Pathway Modulators?—A Report from the Renal Tumors Biology-Driven Drug Development Workshop. Molecular Cancer Therapeutics, 2013, 12, 2619-2627.	4.1	28
150	Association of low-penetrance alleles with male breast cancer risk and clinicopathological characteristics: results from a multicenter study in Italy. Breast Cancer Research and Treatment, 2013, 138, 861-868.	2.5	32
151	X chromosome inactivation pattern in BRCA gene mutation carriers. European Journal of Cancer, 2013, 49, 1136-1141.	2.8	11
152	Performance of BOADICEA and BRCAPRO genetic models and of empirical criteria based on cancer family history for predicting BRCA mutation carrier probabilities: A retrospective study in a sample of Italian cancer genetics clinics. Breast, 2013, 22, 1130-1135.	2.2	21
153	Functional Variants at the 11q13 Risk Locus for Breast Cancer Regulate Cyclin D1 Expression through Long-Range Enhancers. American Journal of Human Genetics, 2013, 92, 489-503.	6.2	201
154	Genome-wide association studies identify four ER negative–specific breast cancer risk loci. Nature Genetics, 2013, 45, 392-398.	21.4	374
155	Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genetics, 2013, 45, 353-361.	21.4	960
156	A novel <i>WT1</i> mutation in familial wilms tumor. Pediatric Blood and Cancer, 2013, 60, 1388-1389.	1.5	10
157	Loss of Heterozygosity Analysis at Different Chromosome Regions in Wilms Tumor Confirms 1p Allelic Loss as a Marker of Worse Prognosis: A Study from the Italian Association of Pediatric Hematology and Oncology. Journal of Urology, 2013, 189, 260-267.	0.4	30
158	Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk. PLoS Genetics, 2013, 9, e1003173.	3.5	105
159	Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk. PLoS Genetics, 2013, 9, e1003212.	3.5	244
160	The Italian National External Quality Assessment Program in Molecular Genetic Testing: Results of the VII Round (2010-2011). BioMed Research International, 2013, 2013, 1-8.	1.9	4
161	Evaluation of a 5-Tier Scheme Proposed for Classification of Sequence Variants Using Bioinformatic and Splicing Assay Data: Inter-Reviewer Variability and Promotion of Minimum Reporting Guidelines. Human Mutation, 2013, 34, 1424-1431.	2.5	67
162	First Evidence of Vertical Paternal Transmission of Osteopatia Striata With Cranial Sclerosis. American Journal of Medical Genetics, Part A, 2013, 161, 1173-1176.	1.2	5

#	Article	IF	CITATIONS
163	Whole Exome Sequencing Suggests Much of Non-BRCA1/BRCA2 Familial Breast Cancer Is Due to Moderate and Low Penetrance Susceptibility Alleles. PLoS ONE, 2013, 8, e55681.	2.5	95
164	Comparative In Vitro and In Silico Analyses of Variants in Splicing Regions of BRCA1 and BRCA2 Genes and Characterization of Novel Pathogenic Mutations. PLoS ONE, 2013, 8, e57173.	2.5	64
165	Meta-Analysis of Mismatch Repair Polymorphisms within the Cogent Consortium for Colorectal Cancer Susceptibility. PLoS ONE, 2013, 8, e72091.	2.5	19
166	Integrative Analysis of Hereditary Nonpolyposis Colorectal Cancer: the Contribution of Allele-Specific Expression and Other Assays to Diagnostic Algorithms. PLoS ONE, 2013, 8, e81194.	2.5	9
167	A Nonsynonymous Polymorphism in <i>IRS1</i> Modifies Risk of Developing Breast and Ovarian Cancers in <i>BRCA1</i> and Ovarian Cancer in <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1362-1370.	2.5	23
168	19p13.1 Is a Triple-Negative–Specific Breast Cancer Susceptibility Locus. Cancer Research, 2012, 72, 1795-1803.	0.9	100
169	Common Variants at the 19p13.1 and <i>ZNF365</i> Loci Are Associated with ER Subtypes of Breast Cancer and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 645-657.	2.5	47
170	Pathology of Breast and Ovarian Cancers among <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Results from the Consortium of Investigators of Modifiers of <i>BRCA1</i> / <i>2</i> (CIMBA). Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 134-147.	2.5	513
171	Rare variants in XRCC2 as breast cancer susceptibility alleles: TableÂ1. Journal of Medical Genetics, 2012, 49, 618-620.	3.2	49
172	9q31.2-rs865686 as a Susceptibility Locus for Estrogen Receptor-Positive Breast Cancer: Evidence from the Breast Cancer Association Consortium. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1783-1791.	2.5	17
173	Cermline mutations in BRIP1 and PALB2 in Jewish high cancer risk families. Familial Cancer, 2012, 11, 483-491.	1.9	29
174	Sequencing Analysis of SLX4/FANCP Gene in Italian Familial Breast Cancer Cases. PLoS ONE, 2012, 7, e31038.	2.5	10
175	Analysis of Gene Copy Number Variations using a Method Based on Lab-on-a-Chip Technology. Tumori, 2012, 98, 126-136.	1.1	5
176	11q13 is a susceptibility locus for hormone receptor positive breast cancer. Human Mutation, 2012, 33, 1123-1132.	2.5	35
177	Identification of fifteen novel germline variants in the <i>BRCA1</i> 3′UTR reveals a variant in a breast cancer case that introduces a functional <i>miR-103</i> target site. Human Mutation, 2012, 33, 1665-1675.	2.5	49
178	Clinical and pathologic characteristics of BRCA-positive and BRCA-negative male breast cancer patients: results from a collaborative multicenter study in Italy. Breast Cancer Research and Treatment, 2012, 134, 411-418.	2.5	73
179	The KL-VS sequence variant of Klotho and cancer risk in BRCA1 and BRCA2 mutation carriers. Breast Cancer Research and Treatment, 2012, 132, 1119-1126.	2.5	8
180	Methylation of O 6-methylguanine-DNA methyltransferase (MGMT) promoter gene in triple-negative breast cancer patients. Breast Cancer Research and Treatment, 2012, 134, 131-137.	2.5	35

#	Article	IF	CITATIONS
181	The SNP rs895819 in miR-27a is not associated with familial breast cancer risk in Italians. Breast Cancer Research and Treatment, 2012, 133, 805-807.	2.5	28
182	Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2mutation carriers. Breast Cancer Research, 2012, 14, R33.	5.0	78
183	Genomic profiling by wholeâ€genome single nucleotide polymorphism arrays in Wilms tumor and association with relapse. Genes Chromosomes and Cancer, 2012, 51, 644-653.	2.8	28
184	ENIGMA-Evidence-based network for the interpretation of germline mutant alleles: An international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Human Mutation, 2012, 33, 2-7.	2.5	269
185	Ovarian cancer susceptibility alleles and risk of ovarian cancer in <i>BRCA1</i> and <i>BRCA2</i> mutation carriers. Human Mutation, 2012, 33, 690-702.	2.5	34
186	Comparison of 6q25 Breast Cancer Hits from Asian and European Genome Wide Association Studies in the Breast Cancer Association Consortium (BCAC). PLoS ONE, 2012, 7, e42380.	2.5	51
187	Analysis of gene copy number variations using a method based on lab-on-a-chip technology. Tumori, 2012, 98, 126-36.	1.1	7
188	Confirmation of 5p12 As a Susceptibility Locus for Progesterone-Receptor–Positive, Lower Grade Breast Cancer. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 2222-2231.	2.5	27
189	Associations of Breast Cancer Risk Factors With Tumor Subtypes: A Pooled Analysis From the Breast Cancer Association Consortium Studies. Journal of the National Cancer Institute, 2011, 103, 250-263.	6.3	596
190	Exploring the link between MORF4L1 and risk of breast cancer. Breast Cancer Research, 2011, 13, R40.	5.0	23
191	Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2011, 13, R110.	5.0	71
192	Familial Adenomatous Polyposis-Associated Desmoids Display Significantly More Genetic Changes than Sporadic Desmoids. PLoS ONE, 2011, 6, e24354.	2.5	24
193	The CASP8 rs3834129 polymorphism and breast cancer risk in BRCA1 mutation carriers. Breast Cancer Research and Treatment, 2011, 125, 855-860.	2.5	11
194	No evidence for an association between the earwax-associated polymorphism in ABCC11 and breast cancer risk in Caucasian women. Breast Cancer Research and Treatment, 2011, 126, 235-239.	2.5	16
195	PALB2 germline mutations in familial breast cancer cases with personal and family history of pancreatic cancer. Breast Cancer Research and Treatment, 2011, 126, 825-828.	2.5	37
196	Evidence for a link between TNFRSF11A and risk of breast cancer. Breast Cancer Research and Treatment, 2011, 129, 947-954.	2.5	12
197	Two new CHEK2 germ-line variants detected in breast cancer/sarcoma families negative for BRCA1, BRCA2, and TP53 gene mutations. Breast Cancer Research and Treatment, 2011, 130, 207-215.	2.5	13
198	Is WTX a suitable target for cancer therapy?. Pediatric Blood and Cancer, 2011, 56, 682-682.	1.5	2

#	Article	IF	CITATIONS
199	Clinical and molecular description of a Wilms tumor in a patient with tuberous sclerosis complex. American Journal of Medical Genetics, Part A, 2011, 155, 1419-1424.	1.2	3
200	Telomere maintenance in wilms tumors: First evidence for the presence of alternative lengthening of telomeres mechanism. Genes Chromosomes and Cancer, 2011, 50, 823-829.	2.8	15
201	Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers. Human Molecular Genetics, 2011, 20, 3304-3321.	2.9	68
202	Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with breast cancer risk and heterogeneity by tumor subtype: findings from the Breast Cancer Association Consortiumâ€. Human Molecular Genetics, 2011, 20, 4693-4706.	2.9	71
203	The Role of KRAS rs61764370 in Invasive Epithelial Ovarian Cancer: Implications for Clinical Testing. Clinical Cancer Research, 2011, 17, 3742-3750.	7.0	47
204	The rs12975333 variant in the miR-125a and breast cancer risk in Germany, Italy, Australia and Spain. Journal of Medical Genetics, 2011, 48, 703-704.	3.2	13
205	Unclassified variants in BRCA genes: guidelines for interpretation. Annals of Oncology, 2011, 22, i18-i23.	1.2	50
206	Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers. Human Molecular Genetics, 2011, 20, 4732-4747.	2.9	32
207	Genetic Variation at 9p22.2 and Ovarian Cancer Risk for BRCA1 and BRCA2 Mutation Carriers. Journal of the National Cancer Institute, 2011, 103, 105-116.	6.3	40
208	Interplay between BRCA1 and RHAMM Regulates Epithelial Apicobasal Polarization and May Influence Risk of Breast Cancer. PLoS Biology, 2011, 9, e1001199.	5.6	91
209	Four new cases of double heterozygosity for BRCA1 and BRCA2 gene mutations: clinical, pathological, and family characteristics. Breast Cancer Research and Treatment, 2010, 124, 251-258.	2.5	27
210	Evaluation of SNPs in <i>miR-146a</i> , <i>miR196a2</i> and <i>miR-499</i> as low-penetrance alleles in German and Italian familial breast cancer cases. Human Mutation, 2010, 31, E1052-E1057.	2.5	147
211	Constitutional ring chromosome 11 mosaicism in a Wilms tumor patient: Cytogenetic, molecular and clinicoâ€pathological studies. American Journal of Medical Genetics, Part A, 2010, 152A, 1756-1763.	1.2	10
212	A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population. Nature Genetics, 2010, 42, 885-892.	21.4	309
213	Common Breast Cancer Susceptibility Alleles and the Risk of Breast Cancer for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Implications for Risk Prediction. Cancer Research, 2010, 70, 9742-9754.	0.9	169
214	A BRCA1 promoter variant (rs11655505) and breast cancer risk. Journal of Medical Genetics, 2010, 47, 268-270.	3.2	6
215	Lynch Syndrome—Related Endometrial Carcinomas Show a High Frequency of Nonendometrioid Types and of High FICO Grade Endometrioid Types. International Journal of Surgical Pathology, 2010, 18, 21-26.	0.8	91
216	Ultradeep Sequencing of a Human Ultraconserved Region Reveals Somatic and Constitutional Genomic Instability. PLoS Biology, 2010, 8, e1000275.	5.6	25

#	Article	IF	CITATIONS
217	Common Genetic Variants and Modification of Penetrance of BRCA2-Associated Breast Cancer. PLoS Genetics, 2010, 6, e1001183.	3.5	85
218	Single-Nucleotide Polymorphisms Inside MicroRNA Target Sites Influence Tumor Susceptibility. Cancer Research, 2010, 70, 2789-2798.	0.9	365
219	HMGA1 protein expression in familial breast carcinoma patients. European Journal of Cancer, 2010, 46, 332-339.	2.8	19
220	Prognostic Relevance of MLH1 and MSH2 Mutations in Hereditary Non-Polyposis Colorectal Cancer Patients. Tumori, 2009, 95, 731-738.	1.1	8
221	Misbehaviour of XIST RNA in Breast Cancer Cells. PLoS ONE, 2009, 4, e5559.	2.5	75
222	Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. Human Molecular Genetics, 2009, 18, 4442-4456.	2.9	99
223	SNPs in ultraconserved elements and familial breast cancer risk. Carcinogenesis, 2009, 30, 544-545.	2.8	23
224	Nonfluorescent Denaturing HPLC–Based Primer-Extension Method for Allele-Specific Expression: Application to Analysis of Mismatch Repair Genes. Clinical Chemistry, 2009, 55, 1711-1718.	3.2	3
225	Reproductive and Hormonal Factors, and Ovarian Cancer Risk for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Results from the International <i>BRCA1/2</i> Carrier Cohort Study. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 601-610.	2.5	130
226	Analysis of a set of missense, frameshift, and in-frame deletion variants of BRCA1. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 660, 1-11.	1.0	38
227	A novel WT1 mutation in a 46,XY boy with congenital bilateral cryptorchidism, nystagmus and Wilms tumor. Pediatric Nephrology, 2009, 24, 1413-1417.	1.7	3
228	Evidences for association of the CASP8 -652 6N del promoter polymorphism with age at diagnosis in familial breast cancer cases. Breast Cancer Research and Treatment, 2009, 113, 607-608.	2.5	20
229	Molecular evidence of the independent origin of multiple Wilms tumors in a case of WAGR syndrome. Pediatric Blood and Cancer, 2008, 51, 344-348.	1.5	7
230	Prediction and assessment of splicing alterations: implications for clinical testing. Human Mutation, 2008, 29, 1304-1313.	2.5	108
231	Common Breast Cancer-Predisposition Alleles Are Associated with Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. American Journal of Human Genetics, 2008, 82, 937-948.	6.2	257
232	Cyclin D1 expression analysis in familial breast cancers may discriminate BRCAX from BRCA2-linked cases. Modern Pathology, 2008, 21, 1262-1270.	5.5	16
233	The p53 Arg72Pro and Ins16bp polymorphisms and their haplotypes are not associated with breast cancer risk in BRCA-mutation negative familial cases. Cancer Detection and Prevention, 2008, 32, 140-143.	2.1	20
234	<i>BRCA1</i> p.Val1688del Is a Deleterious Mutation That Recurs in Breast and Ovarian Cancer Families From Northeast Italy. Journal of Clinical Oncology, 2008, 26, 26-31.	1.6	44

#	Article	IF	CITATIONS
235	Re: Molecular Basis for Estrogen Receptor Deficiency in BRCA1-Linked Breast Cancer. Journal of the National Cancer Institute, 2008, 100, 752-753.	6.3	2
236	Determination of Cancer Risk Associated with Germ Line BRCA1 Missense Variants by Functional Analysis. Cancer Research, 2007, 67, 1494-1501.	0.9	110
237	Age at Menarche and Menopause and Breast Cancer Risk in the International BRCA1/2 Carrier Cohort Study. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 740-746.	2.5	63
238	Cyclooxygenase-2 and Platelet-Derived Growth Factor Receptors as Potential Targets in Treating Aggressive Fibromatosis. Clinical Cancer Research, 2007, 13, 5034-5040.	7.0	82
239	Germline mutations of TP53 and BRCA2 genes in breast cancer/sarcoma families. European Journal of Cancer, 2007, 43, 601-606.	2.8	44
240	Nonâ€chromosome 11â€p syndromes in Wilms tumor patients: Clinical and cytogenetic report of two Down syndrome cases and one Turner syndrome case. American Journal of Medical Genetics, Part A, 2007, 143A, 85-88.	1.2	5
241	Increased frequency of disease-causing MYH mutations in colon cancer families. Carcinogenesis, 2006, 27, 2243-2249.	2.8	44
242	Incidental Carcinomas in Prophylactic Specimens in BRCA1 and BRCA2 Germ-line Mutation Carriers, With Emphasis on Fallopian Tube Lesions. American Journal of Surgical Pathology, 2006, 30, 1222-1230.	3.7	130
243	The Murine Pou6f2 Gene is Temporally and Spatially Regulated During Kidney Embryogenesis and its Human Homolog is Overexpressed in a Subset of Wilms Tumors. Journal of Pediatric Hematology/Oncology, 2006, 28, 791-797.	0.6	10
244	Combined use of MLPA and nonfluorescent multiplex PCR analysis by high performance liquid chromatography for the detection of genomic rearrangements. Human Mutation, 2006, 27, 1047-1056.	2,5	20
245	A Human Cell-Based Assay to Evaluate the Effects of Alterations in the MLH1 Mismatch Repair Gene. Cancer Research, 2006, 66, 9036-9044.	0.9	52
246	WT1 Gene Analysis in Sporadic Early-Onset and Bilateral Wilms Tumor Patients Without Associated Abnormalities. Journal of Pediatric Hematology/Oncology, 2005, 27, 197-201.	0.6	8
247	Wilms Tumor in Monozygous Twins. Journal of Pediatric Hematology/Oncology, 2005, 27, 521-525.	0.6	3
248	Germline mutations ofAXIN2are not associated with nonsyndromic colorectal cancer. Human Mutation, 2005, 25, 498-500.	2,5	14
249	Bilateral preaxial polydactyly in a WAGR syndrome patient. American Journal of Medical Genetics, Part A, 2005, 134A, 426-429.	1.2	5
250	Prediction of <i>BRCA1</i> Status in Patients with Breast Cancer Using Estrogen Receptor and Basal Phenotype. Clinical Cancer Research, 2005, 11, 5175-5180.	7.0	577
251	Loss of the Inactive X Chromosome and Replication of the Active X in BRCA1-Defective and Wild-type Breast Cancer Cells. Cancer Research, 2005, 65, 2139-2146.	0.9	94
252	Cyclooxygenase-2 Expression in FAP Patients Carrying Germ Line MYH Mutations. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 2049-2052.	2.5	9

#	Article	IF	CITATIONS
253	Pathology of Ovarian Cancers in BRCA1 and BRCA2 Carriers. Clinical Cancer Research, 2004, 10, 2473-2481.	7.0	224
254	Different Genetic Features Associated with Colon and Rectal Carcinogenesis. Clinical Cancer Research, 2004, 10, 4015-4021.	7.0	191
255	Putative common origin of two MLH1 mutations in Italian-Quebec hereditary non-polyposis colorectal cancer families. Clinical Genetics, 2004, 66, 137-143.	2.0	8
256	APC Genotype Is Not a Prognostic Factor in Familial Adenomatous Polyposis Patients With Colorectal Cancer. Diseases of the Colon and Rectum, 2004, 47, 1662-1669.	1.3	6
257	The CHEK2 c.1100delC mutation plays an irrelevant role in breast cancer predisposition in Italy. Human Mutation, 2004, 24, 100-101.	2.5	39
258	Germline mutations of thePOU6F2 gene in Wilms tumors with loss of heterozygosity on chromosome 7p14. Human Mutation, 2004, 24, 400-407.	2.5	38
259	Prevalence of the Y165C, G382D and 1395delGGA germline mutations of the <i>MYH</i> gene in Italian patients with adenomatous polyposis coli and colorectal adenomas. International Journal of Cancer, 2004, 109, 680-684.	5.1	159
260	Atypical Epithelial Proliferation in Fallopian Tubes in Prophylactic Salpingo-oophorectomy Specimens from BRCA1 and BRCA2 Germline Mutation Carriers. International Journal of Gynecological Pathology, 2004, 23, 35-40.	1.4	135
261	Different Expressivity of BRCA1 and BRCA2: Analysis of 179 Italian Pedigrees with Identified Mutation. Breast Cancer Research and Treatment, 2003, 81, 71-79.	2.5	22
262	Average Risks of Breast and Ovarian Cancer Associated with BRCA1 or BRCA2 Mutations Detected in Case Series Unselected for Family History: A Combined Analysis of 22 Studies. American Journal of Human Genetics, 2003, 72, 1117-1130.	6.2	3,105
263	Multiple Approach to the Exploration of Genotype-Phenotype Correlations in Familial Adenomatous Polyposis. Journal of Clinical Oncology, 2003, 21, 1698-1707.	1.6	184
264	Prevalence of the E1317Q Variant of the APC Gene in Italian Patients with Colorectal Adenomas. Genetic Testing and Molecular Biomarkers, 2002, 6, 313-317.	1.7	16
265	Estrogen Receptor-Beta Expression in Hereditary Breast Cancer. Journal of Clinical Oncology, 2002, 20, 3752-3753.	1.6	20
266	lleorectal anastomosis in patients with familial adenomatous polyposis. Gastroenterology, 2001, 121, 502.	1.3	2
267	Genotype and phenotype factors as determinants of desmoid tumors in patients with familial adenomatous polyposis. International Journal of Cancer, 2001, 95, 102-107.	5.1	206
268	Evidence of a founder mutation of BRCA1 in a highly homogeneous population from southern Italy with breast/ovarian cancer. Human Mutation, 2001, 18, 163-164.	2.5	215
269	Refinement within single yeast artificial chromosome clones of a minimal region commonly deleted on the short arm of chromosome 7 in Wilms tumours. Genes Chromosomes and Cancer, 2001, 31, 42-47.	2.8	18
270	Detection of germline BRCA1 mutations by Multiple-Dye Cleavase Fragment Length Polymorphism (MD-CFLP) method. British Journal of Cancer, 2001, 85, 845-849.	6.4	4

#	Article	IF	CITATIONS
271	Genotype and Phenotype Factors as Determinants for Rectal Stump Cancer in Patients With Familial Adenomatous Polyposis. Annals of Surgery, 2000, 231, 538-543.	4.2	84
272	Microsatellite instability in colorectal-cancer patients with suspected genetic predisposition. International Journal of Cancer, 2000, 89, 87-91.	5.1	33
273	A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene, 2000, 19, 3799-3804.	5.9	173
274	The Exon 13 Duplication in the BRCA1 Gene Is a Founder Mutation Present in Geographically Diverse Populations. American Journal of Human Genetics, 2000, 67, 207-212.	6.2	100
275	Screening for mutations of theAPC gene in 66 Italian familial adenomatous polyposis patients: Evidence for phenotypic differences in cases with and without identified mutation. Human Mutation, 1999, 13, 116-123.	2.5	44
276	Survival of patients with hereditary colorectal cancer: Comparison of HNPCC and colorectal cancer in FAP patients with sporadic colorectal cancer. , 1999, 80, 183-187.		68
277	Functional analysis of human MLH1 mutations in Saccharomyces cerevisiae. Nature Genetics, 1998, 19, 384-389.	21.4	136
278	Mutations of adenomatous polyposis coli (APC) gene are uncommon in sporadic desmoid tumours. British Journal of Cancer, 1998, 78, 582-587.	6.4	82
279	A novel EWS-ERG rearrangement generating two hybrid mRNAs in a peripheral primitive neuroectodermal tumour (pPNET) with a t(15;22) translocation. , 1998, 186, 434-437.		10
280	Concurrent pheochromocytoma, paraganglioma, papillary thyroid carcinoma, and desmoid tumor: A case report with analyses at the molecular level. Endocrine Pathology, 1998, 9, 79-90.	9.0	6
281	Oral Contraceptives and the Risk of Hereditary Ovarian Cancer. New England Journal of Medicine, 1998, 339, 424-428.	27.0	591
282	No evidence of WT1 involvement in a Burkitt's lymphoma in a patient with Denys–Drash syndrome. Annals of Oncology, 1998, 9, 627-631.	1.2	6
283	Mutations predisposing to hereditary nonpolyposis colorectal cancer: Database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology, 1997, 113, 1146-1158.	1.3	682
284	Chromosomal Localizations and Molecular Analysis ofTDGGene-Related Sequences. Genomics, 1997, 44, 222-226.	2.9	14
285	Recommendations for the Molecular Diagnosis of Familial Adenomatous Polyposis. Tumori, 1997, 83, 795-799.	1.1	2
286	Mean age of tumor onset in hereditary nonpolyposis colorectal cancer (HNPCC) families correlates with the presence of mutations in DNA mismatch repair genes. , 1997, 19, 135-142.		46
287	Mapping of a Putative Tumor Suppressor Locus to Proximal 7p in Wilms Tumors. Genomics, 1996, 37, 310-315.	2.9	45
288	Analysis of the neurofibromatosis type 2 gene in different human tumors of neuroectodermal origin. Human Genetics, 1996, 97, 638-641.	3.8	33

#	Article	IF	CITATIONS
289	Molecular Genetics of Hereditary Non-Polyposis Colorectal Cancer (HNPCC). Tumori, 1996, 82, 122-135.	1.1	5
290	The coatomer protein Î-COP, encoded by the archain gene, is conserved across diverse eukaryotes. Mammalian Genome, 1996, 7, 784-786.	2.2	20
291	Analysis of the neurofibromatosis type 2 gene in different human tumors of neuroectodermal origin. Human Genetics, 1996, 97, 638-641.	3.8	2
292	The human archain gene, ARCN1, has highly conserved homologs in rice and drosophila. Genomics, 1995, 26, 101-106.	2.9	23
293	Allelotyping in Wilms Tumors Identifies a Putative Third Tumor Suppressor Gene on Chromosome 11. Genomics, 1995, 27, 497-501.	2.9	20
294	Homozygous intragenic loss of the WT1 locus in a sporadic intralobar wilms' tumor. International Journal of Cancer, 1993, 55, 174-176.	5.1	6
295	A Panel of Sequence Tagged Sites for Chromosome Band 11q23. Genomics, 1993, 17, 744-747.	2.9	6
296	Distinct breakpoints in band 11q23 of the t(4;11) and t(11;14) associated with leukocyte malignancy. Genes Chromosomes and Cancer, 1992, 5, 50-56.	2.8	7
297	Taql RFLP of the human tropomyosin gene (TPM3) involved in the generation of the TRK oncogene. Nucleic Acids Research, 1991, 19, 4796-4796.	14.5	5
298	Sacl identifies an additional RFLP at the D11S12 locus. Nucleic Acids Research, 1991, 19, 1717-1717.	14.5	1
299	Onco-Suppressor Genes in Human Cancer. Tumori, 1989, 75, 329-336.	1.1	1
300	Analysis of Hras1-Associated Polymorphisms and Segregation of Taq1-Defined Alleles in Different Human Tumors. , 1989, , 55-65.		0
301	Monoclonal Antibodies Against NIH 3T3 Cells Transformed by Human Thyroid Carcinoma DNA. Hybridoma, 1988, 7, 7-18.	0.6	1
302	BgIII polymorphisn of the epidermal growth factor receptor (EGF-R) gene. Nucleic Acids Research, 1988, 16, 7753-7753.	14.5	1
303	RFLP for Taql of the human thyroid papillary carcinoma (PTC) oncogene. Nucleic Acids Research, 1988, 16, 9062-9062.	14.5	2
304	LOSS OF POLYMORPHIC RESTRICTION FRAGMENTS OF CLASS I AND CLASS II MHC GENES IN A MALIGNANT MELANOMA. International Journal of Immunogenetics, 1986, 13, 241-246.	1.2	9
305	Two RFLPs generated by Taq I at the human HRAS1 locus. Nucleic Acids Research, 1986, 14, 4379-4379.	14.5	8
306	Integration and Expression of Mcf-13 Provirus in Mcf-13-Induced Lymphomas. Tumori, 1984, 70, 467-476.	1.1	2