
Nigel J Temperton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6213431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature, 2022, 601, 110-117.	13.7	280
2	The antibody response to SARS-CoV-2 Beta underscores the antigenic distance to other variants. Cell Host and Microbe, 2022, 30, 53-68.e12.	5.1	52
3	Different decay of antibody response and VOC sensitivity in naÃ ⁻ ve and previously infected subjects at 15Âweeks following vaccination with BNT162b2. Journal of Translational Medicine, 2022, 20, 22.	1.8	11
4	Lung directed antibody gene transfer confers protection against SARS-CoV-2 infection. Thorax, 2022, 77, 1229-1236.	2.7	7
5	Durable T-cellular and humoral responses in SARS-CoV-2 hospitalized and community patients. PLoS ONE, 2022, 17, e0261979.	1.1	10
6	SARS-CoV-2 vaccination elicits unconventional IgM specific responses in naÃ⁻ve and previously COVID-19-infected individuals. EBioMedicine, 2022, 77, 103888.	2.7	39
7	HLAâ€ÐR polymorphism in SARS oVâ€2 infection and susceptibility to symptomatic COVIDâ€19. Immunology, 2022, 166, 68-77.	' 2.0	18
8	Neutralisation Hierarchy of SARS-CoV-2 Variants of Concern Using Standardised, Quantitative Neutralisation Assays Reveals a Correlation With Disease Severity; Towards Deciphering Protective Antibody Thresholds. Frontiers in Immunology, 2022, 13, 773982.	2.2	10
9	Isolation of infectious Lloviu virus from Schreiber's bats in Hungary. Nature Communications, 2022, 13, 1706.	5.8	31
10	Pseudotyped Bat Coronavirus RaTG13 is efficiently neutralised by convalescent sera from SARS-CoV-2 infected patients. Communications Biology, 2022, 5, 409.	2.0	5
11	Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro. Nature Communications, 2022, 13, 2766.	5.8	20
12	Use of Equine Herpesvirus 1 glycoprotein pseudotyped lentiviral particles for the development of serological tests and assessment of lyophilisation for transport and storage. Access Microbiology, 2022, 4, .	0.2	0
13	Potent cross-reactive antibodies following Omicron breakthrough in vaccinees. Cell, 2022, 185, 2116-2131.e18.	13.5	105
14	Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses. JCI Insight, 2022, 7, .	2.3	24
15	Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell, 2022, 185, 2422-2433.e13.	13.5	532
16	Human seasonal coronavirus neutralization and COVIDâ€19 severity. Journal of Medical Virology, 2022, 94, 4820-4829.	2.5	9
17	Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science, 2022, 377, .	6.0	241
18	Convalescent plasma therapy for the treatment of patients with COVIDâ€19: Assessment of methods available for antibody detection and their correlation with neutralising antibody levels. Transfusion Medicine, 2021, 31, 167-175.	0.5	71

#	Article	IF	CITATIONS
19	The role of pseudotype neutralization assays in understanding SARS CoV-2. Oxford Open Immunology, 2021, 2, iqab005.	1.2	20
20	SARS-CoV-2 evolution during treatment of chronic infection. Nature, 2021, 592, 277-282.	13.7	802
21	Nanobodies mapped to cross-reactive and divergent epitopes on A(H7N9) influenza hemagglutinin using yeast display. Scientific Reports, 2021, 11, 3126.	1.6	12
22	Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 2021, 593, 136-141.	13.7	648
23	Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 2021, 184, 1821-1835.e16.	13.5	180
24	The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell, 2021, 184, 2183-2200.e22.	13.5	331
25	Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science, 2021, 372, 1418-1423.	6.0	286
26	Comparison of Serological Assays for the Detection of SARS-CoV-2 Antibodies. Viruses, 2021, 13, 713.	1.5	18
27	Development of Lentiviral Vectors Pseudotyped With Influenza B Hemagglutinins: Application in Vaccine Immunogenicity, mAb Potency, and Sero-Surveillance Studies. Frontiers in Immunology, 2021, 12, 661379.	2.2	6
28	Detection of Serum Cross-Reactive Antibodies and Memory Response to SARS-CoV-2 in Prepandemic and Post–COVID-19 Convalescent Samples. Journal of Infectious Diseases, 2021, 224, 1305-1315.	1.9	38
29	Exploiting Pan Influenza A and Pan Influenza B Pseudotype Libraries for Efficient Vaccine Antigen Selection. Vaccines, 2021, 9, 741.	2.1	9
30	Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell, 2021, 184, 4220-4236.e13.	13.5	630
31	Coronavirus Pseudotypes for All Circulating Human Coronaviruses for Quantification of Cross-Neutralizing Antibody Responses. Viruses, 2021, 13, 1579.	1.5	14
32	Paucity and discordance of neutralising antibody responses to SARS-CoV-2 VOCs in vaccinated immunodeficient patients and health-care workers in the UK. Lancet Microbe, The, 2021, 2, e416-e418.	3.4	16
33	Blood transcriptional biomarkers of acute viral infection for detection of pre-symptomatic SARS-CoV-2 infection: a nested, case-control diagnostic accuracy study. Lancet Microbe, The, 2021, 2, e508-e517.	3.4	52
34	Correlation of Influenza B Haemagglutination Inhibiton, Single-Radial Haemolysis and Pseudotype-Based Microneutralisation Assays for Immunogenicity Testing of Seasonal Vaccines. Vaccines, 2021, 9, 100.	2.1	8
35	Production, Titration, Neutralisation, Storage and Lyophilisation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Lentiviral Pseudotypes. Bio-protocol, 2021, 11, e4236.	0.2	33
36	Profiling Antibody Response Patterns in COVID-19: Spike S1-Reactive IgA Signature in the Evolution of SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 772239.	2.2	18

#	Article	IF	CITATIONS
37	Amino acid substitutions in the H5N1 avian influenza haemagglutinin alter pH of fusion and receptor binding to promote a highly pathogenic phenotype in chickens. Journal of General Virology, 2021, 102, .	1.3	2
38	Analysis of Serological Biomarkers of SARS-CoV-2 Infection in Convalescent Samples From Severe, Moderate and Mild COVID-19 Cases. Frontiers in Immunology, 2021, 12, 748291.	2.2	29
39	AutoPlate: Rapid Dose-Response Curve Analysis for Biological Assays. Frontiers in Immunology, 2021, 12, 681636.	2.2	1
40	Combined Point-of-Care Nucleic Acid and Antibody Testing for SARS-CoV-2 following Emergence of D614G Spike Variant. Cell Reports Medicine, 2020, 1, 100099.	3.3	61
41	Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nature Microbiology, 2020, 5, 1598-1607.	5.9	1,115
42	Evaluation of a Pseudotyped Virus Neutralisation Test for the Measurement of Equine Influenza Virus-Neutralising Antibody Responses Induced by Vaccination and Infection. Vaccines, 2020, 8, 466.	2.1	4
43	Characterisation of SARS-CoV-2 Lentiviral Pseudotypes and Correlation between Pseudotype-Based Neutralisation Assays and Live Virus-Based Micro Neutralisation Assays. Viruses, 2020, 12, 1011.	1.5	54
44	Protection From Influenza by Intramuscular Gene Vector Delivery of a Broadly Neutralizing Nanobody Does Not Depend on Antibody Dependent Cellular Cytotoxicity. Frontiers in Immunology, 2020, 11, 627.	2.2	19
45	C4b Binding Protein Acts as an Innate Immune Effector Against Influenza A Virus. Frontiers in Immunology, 2020, 11, 585361.	2.2	20
46	Development of immunohistochemistry and in situ hybridisation for the detection of SARS-CoV and SARS-CoV-2 in formalin-fixed paraffin-embedded specimens. Scientific Reports, 2020, 10, 21894.	1.6	18
47	Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection. Science Immunology, 2020, 5, .	5.6	172
48	Detection of neutralising antibodies to SARS-CoV-2 to determine population exposure in Scottish blood donors between March and May 2020. Eurosurveillance, 2020, 25, .	3.9	64
49	Tropism and neutralisation studies on bat influenza H17N10. Access Microbiology, 2020, 2, .	0.2	0
50	Generation of Equine Herpesvirus type 1 glycoprotein pseudotyped lentiviral particles for use as a tool for tropism and diagnostic studies. Access Microbiology, 2020, 2, .	0.2	0
51	Influenza D pseudotyped lentiviruses: production, neutralisation assay and serological surveillance. Access Microbiology, 2020, 2, .	0.2	0
52	Entry of the bat influenza H17N10 virus into mammalian cells is enabled by the MHC class II HLA-DR receptor. Nature Microbiology, 2019, 4, 2035-2038.	5.9	35
53	The bat influenza H17N10 is neutralized by broadly-neutralizing monoclonal antibodies and its neuraminidase facilitates viral egress. International Journal of Infectious Diseases, 2019, 79, 99.	1.5	0
54	Humoral Immunogenicity and Efficacy of a Single Dose of ChAdOx1 MERS Vaccine Candidate in Dromedary Camels. Scientific Reports, 2019, 9, 16292.	1.6	72

#	Article	IF	CITATIONS
55	Cross-Reactive and Lineage-Specific Single Domain Antibodies against Influenza B Hemagglutinin. Antibodies, 2019, 8, 14.	1.2	14
56	Generation, lyophilisation and epitope modification of high titre filovirus pseudotyped lentiviruses for use in antibody neutralisation assays. International Journal of Infectious Diseases, 2019, 79, 120-121.	1.5	0
57	Identification of Broad-Spectrum Antiviral Compounds by Targeting Viral Entry. Viruses, 2019, 11, 176.	1.5	48
58	Generation, lyophilisation and epitope modification of high titre filovirus pseudotyped lentiviruses for use in antibody neutralisation assays and ELISA. Access Microbiology, 2019, 1, .	0.2	0
59	A naturally protective epitope of limited variability asÂan influenza vaccine target. Nature Communications, 2018, 9, 3859.	5.8	32
60	Cross-Protective Immune Responses Induced by Sequential Influenza Virus Infection and by Sequential Vaccination With Inactivated Influenza Vaccines. Frontiers in Immunology, 2018, 9, 2312.	2.2	22
61	Integrase Defective Lentiviral Vector as a Vaccine Platform for Delivering Influenza Antigens. Frontiers in Immunology, 2018, 9, 171.	2.2	31
62	Pseudotype Neutralization Assays: From Laboratory Bench to Data Analysis. Methods and Protocols, 2018, 1, 8.	0.9	104
63	A Lentiviral Pseudotype ELLA for the Measurement of Antibodies Against Influenza Neuraminidase. Bio-protocol, 2018, 8, .	0.2	6
64	Chimeric influenza haemagglutinins: Generation and use in pseudotype neutralization assays. MethodsX, 2017, 4, 11-24.	0.7	8
65	ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine, 2017, 35, 3780-3788.	1.7	133
66	Novel Bivalent Viral-Vectored Vaccines Induce Potent Humoral and Cellular Immune Responses Conferring Protection against Stringent Influenza A Virus Challenge. Journal of Immunology, 2017, 199, 1333-1341.	0.4	16
67	The Use of Hyperimmune Chicken Reference Sera Is Not Appropriate for the Validation of Influenza Pseudotype Neutralization Assays. Pathogens, 2017, 6, 45.	1.2	Ο
68	An Optimized Method for the Production Using PEI, Titration and Neutralization of SARS-CoV Spike Luciferase Pseudotypes. Bio-protocol, 2017, 7, e2514.	0.2	21
69	Epidemiology of herpes simplex virus type 1 and 2 in Italy: a seroprevalence study from 2000 to 2014. Journal of Preventive Medicine and Hygiene, 2017, 58, E27-E33.	0.9	20
70	The Optimisation of Pseudotyped Viruses for the Characterisation of Immune Responses to Equine Influenza Virus. Pathogens, 2016, 5, 68.	1.2	6
71	Stalking influenza by vaccination with pre-fusion headless HA mini-stem. Scientific Reports, 2016, 6, 22666.	1.6	104
72	Exploiting viral pseudotypes for emerging virus research. International Journal of Infectious Diseases, 2016, 53, 8.	1.5	0

#	Article	IF	CITATIONS
73	The Viral Pseudotype Unit: viral pseudotype R&D, dissemination and education. Future Virology, 2016, 11, 113-116.	0.9	0
74	Activation of cross-reactive mucosal T and B cell responses in human nasopharynx-associated lymphoid tissue in vitro by Modified Vaccinia Ankara-vectored influenza vaccines. Vaccine, 2016, 34, 1688-1695.	1.7	13
75	The contribution of specific haemagglutinin mutations to equine influenza vaccine breakdown. Journal of Equine Veterinary Science, 2016, 39, S74.	0.4	0
76	Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods. Journal of Controlled Release, 2016, 225, 192-204.	4.8	86
77	Technical considerations for the generation of novel pseudotyped viruses. Future Virology, 2016, 11, 47-59.	0.9	11
78	An optimised method for the production of MERS-CoV spike expressing viral pseudotypes. MethodsX, 2015, 2, 379-384.	0.7	68
79	Ebolavirus: pseudotypes, libraries and standards. Future Virology, 2015, 10, 1187-1189.	0.9	1
80	Pseudotype-Based Neutralization Assays for Influenza: A Systematic Analysis. Frontiers in Immunology, 2015, 6, 161.	2.2	67
81	Hemagglutinin Sequence Conservation Guided Stem Immunogen Design from Influenza A H3 Subtype. Frontiers in Immunology, 2015, 6, 329.	2.2	34
82	Cross-reactive immunity against influenza viruses in children and adults following 2009 pandemic H1N1 infection. Antiviral Research, 2015, 114, 106-112.	1.9	17
83	Bat and pig IFN-induced transmembrane protein 3 restrict cell entry by influenza virus and lyssaviruses. Journal of General Virology, 2015, 96, 991-1005.	1.3	21
84	Structures of complexes formed by H5 influenza hemagglutinin with a potent broadly neutralizing human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9430-9435.	3.3	38
85	The application of pseudotypes to influenza pandemic preparedness. Future Virology, 2015, 10, 731-749.	0.9	5
86	Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry. F1000Research, 2015, 4, 30.	0.8	57
87	Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry. F1000Research, 2015, 4, 30.	0.8	63
88	Overview of Serological Techniques for Influenza Vaccine Evaluation: Past, Present and Future. Vaccines, 2014, 2, 707-734.	2.1	80
89	Discordant Correlation between Serological Assays Observed When Measuring Heterosubtypic Responses against Avian Influenza H5 and H7 Viruses in Unexposed Individuals. BioMed Research International, 2014, 2014, 1-12.	0.9	7
90	Detection of antibodies against H5 and H7 strains in birds: evaluation of influenza pseudovirus particle neutralization tests. Infection Ecology and Epidemiology, 2014, 4, 23011.	0.5	11

#	Article	IF	CITATIONS
91	Multiplex Evaluation of Influenza Neutralizing Antibodies with Potential Applicability to In-Field Serological Studies. Journal of Immunology Research, 2014, 2014, 1-11.	0.9	24
92	Dramatic Potentiation of the Antiviral Activity of HIV Antibodies by Cholesterol Conjugation. Journal of Biological Chemistry, 2014, 289, 35015-35028.	1.6	17
93	Lyophilisation of influenza, rabies and Marburg lentiviral pseudotype viruses for the development and distribution of a neutralisation -assay-based diagnostic kit. Journal of Virological Methods, 2014, 210, 51-58.	1.0	30
94	Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2514-23.	3.3	165
95	Chicken Interferon-Inducible Transmembrane Protein 3 Restricts Influenza Viruses and Lyssaviruses <i>In Vitro</i> . Journal of Virology, 2013, 87, 12957-12966.	1.5	84
96	Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility. Journal of General Virology, 2013, 94, 1220-1229.	1.3	58
97	Improved adjuvanting of seasonal influenza vaccines: Preclinical studies of <scp>MVAâ€NP+M</scp> 1 coadministration with inactivated influenza vaccine. European Journal of Immunology, 2013, 43, 1940-1952.	1.6	43
98	Infection with 2009 H1N1 Influenza Virus Primes for Immunological Memory in Human Nose-Associated Lymphoid Tissue, Offering Cross-Reactive Immunity to H1N1 and Avian H5N1 Viruses. Journal of Virology, 2013, 87, 5331-5339.	1.5	24
99	Comparative Serological Assays for the Study of H5 and H7 Avian Influenza Viruses. Influenza Research and Treatment, 2013, 2013, 1-9.	1.5	13
100	Current progress with serological assays for exotic emerging/re-emerging viruses. Future Virology, 2013, 8, 745-755.	0.9	23
101	The use of equine influenza pseudotypes for serological screening. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2012, 06, .	0.1	5
102	The use of equine influenza pseudotypes for serological screening. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2012, 6, 304-8.	0.1	12
103	The production and development of H7 Influenza virus pseudotypes for the study of humoral responses against avian viruses. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2012, 7, 315-20.	0.1	11
104	The human Transmembrane Protease Serine 2 is necessary for the production of Group 2 influenza A virus pseudotypes. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2012, 7, 309-14.	0.1	23
105	Llama-Derived Single Domain Antibodies to Build Multivalent, Superpotent and Broadened Neutralizing Anti-Viral Molecules. PLoS ONE, 2011, 6, e17665.	1.1	150
106	A Neutralizing Antibody Selected from Plasma Cells That Binds to Group 1 and Group 2 Influenza A Hemagglutinins. Science, 2011, 333, 850-856.	6.0	1,092
107	Adjuvant-Free Immunization with Hemagglutinin-Fc Fusion Proteins as an Approach to Influenza Vaccines. Journal of Virology, 2011, 85, 3010-3014.	1.5	47
108	Antigenic Drift in H5N1 Avian Influenza Virus in Poultry Is Driven by Mutations in Major Antigenic Sites of the Hemagglutinin Molecule Analogous to Those for Human Influenza Virus. Journal of Virology, 2011, 85, 8718-8724.	1.5	96

#	Article	IF	CITATIONS
109	Nanobodies With In Vitro Neutralizing Activity Protect Mice Against H5N1 Influenza Virus Infection. Journal of Infectious Diseases, 2011, 203, 1063-1072.	1.9	94
110	Virus neutralising activity of African fruit bat (Eidolon helvum) sera against emerging lyssaviruses. Virology, 2010, 408, 183-189.	1.1	53
111	The Use of Retroviral Pseudotypes for the Measurement of Antibody Responses to SARS Coronavirus. , 2010, , 279-288.		1
112	Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. Journal of Clinical Investigation, 2010, 120, 1663-1673.	3.9	403
113	Neutralizing monoclonal antibodies to different clades of Influenza A H5N1 viruses. Journal of Virological Methods, 2009, 157, 161-167.	1.0	16
114	Human monoclonal antibodies in single chain fragment variable format with potent neutralization activity against influenza virus H5N1. Antiviral Research, 2009, 83, 238-244.	1.9	13
115	Pseudoparticle neutralization is a reliable assay to measure immunity and cross-reactivity to H5N1 influenza viruses. Vaccine, 2009, 27, 5998-6003.	1.7	61
116	BirdFlu2009: Avian Influenza and Human Health. 9-10 September 2009, Oxford, UK. IDrugs: the Investigational Drugs Journal, 2009, 12, 686-8.	0.7	0
117	In vitro evaluation of neuraminidase inhibitors using the neuraminidase-dependent release assay of hemagglutinin-pseudotyped viruses. Antiviral Research, 2008, 79, 199-205.	1.9	24
118	T Cell Responses to Whole SARS Coronavirus in Humans. Journal of Immunology, 2008, 181, 5490-5500.	0.4	449
119	Investigating antibody neutralization of lyssaviruses using lentiviral pseudotypes: a cross-species comparison. Journal of General Virology, 2008, 89, 2204-2213.	1.3	99
120	Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines. Journal of General Virology, 2007, 88, 1753-1760.	1.3	50
121	A sensitive retroviral pseudotype assay for influenza H5N1â€neutralizing antibodies. Influenza and Other Respiratory Viruses, 2007, 1, 105-112.	1.5	142
122	Longitudinally Profiling Neutralizing Antibody Response to SARS Coronavirus with Pseudotypes. Emerging Infectious Diseases, 2005, 11, 411-416.	2.0	152
123	The distribution of the endogenous retroviruses HERV-K113 and HERV-K115 in health and disease. Genomics, 2005, 86, 337-341.	1.3	94
124	Activation of antigen-presenting cells by endogenous retroviral RNA. Arthritis Research, 2005, 7, P24.	2.0	0
125	Enhancement of humoral immune responses to a human cytomegalovirus DNA vaccine: Adjuvant effects of aluminum phosphate and CpG oligodeoxynucleotides. Journal of Medical Virology, 2003, 70, 86-90.	2.5	38
126	DNA vaccines against cytomegalovirus: current progress. International Journal of Antimicrobial Agents, 2002, 19, 169-172.	1.1	20

#	Article	IF	CITATIONS
127	Distinct Mitochondrial and Cytosolic Enzymes Mediate Trypanothione-dependent Peroxide Metabolism in Trypanosoma cruzi. Journal of Biological Chemistry, 2000, 275, 8220-8225.	1.6	149
128	Overexpression of superoxide dismutase in Trypanosoma cruzi results in increased sensitivity to the trypanocidal agents gentian violet and benznidazole. Molecular and Biochemical Parasitology, 1998, 96, 167-176.	0.5	50
129	Cloning of an Fe-superoxide dismutase gene homologue from Trypanosoma cruzi. Molecular and Biochemical Parasitology, 1996, 76, 339-343.	0.5	28
130	Fatal COVID-19 Outcomes are Associated with an Antibody Response Targeting Epitopes Shared with Endemic Coronaviruses. SSRN Electronic Journal, 0, , .	0.4	3
131	ÂÂÂThe Antigenic Anatomy of SARS-CoV-2 Receptor Binding Domain. SSRN Electronic Journal, 0, , .	0.4	2
132	SARS-CoV-2 Vaccination Elicits Unconventional IgM Specific Responses in NaÃ ⁻ ve and Previously COVID19-Infected Individuals. SSRN Electronic Journal, 0, , .	0.4	0
133	Receptor Binding and Escape From Beta Antibody Responses Drive Omicron-B.1.1.529 Evolution. SSRN Electronic Journal, 0, , .	0.4	6