Jia Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6213348/publications.pdf

Version: 2024-02-01

27	906	15	27
papers	citations	h-index	g-index
28	28	28	1490
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Antigenâ€Specific Stimulation and Expansion of CARâ€T Cells Using Membrane Vesicles as Target Cell Surrogates. Small, 2021, 17, e2102643.	10.0	17
2	Immunity against cancer cells may promote their proliferation and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 426-431.	7.1	11
3	Multiscale computation delivers organophosphorus reactivity and stereoselectivity to immunoglobulin scavengers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22841-22848.	7.1	13
4	Inhibitory antibodies identify unique sites of therapeutic vulnerability in rhinovirus and other enteroviruses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13499-13508.	7.1	7
5	Different genetic barriers for resistance to HA stem antibodies in influenza H3 and H1 viruses. Science, 2020, 368, 1335-1340.	12.6	51
6	Selection of Small Molecules that Bind to and Activate the Insulin Receptor from a DNA-Encoded Library of Natural Products. IScience, 2020, 23, 101197.	4.1	34
7	hFUT1-Based Live-Cell Assay To Profile $\hat{l}\pm 1$ -2-Fucoside-Enhanced Influenza Virus A Infection. ACS Chemical Biology, 2020, 15, 819-823.	3.4	4
8	Bacterial glycosyltransferase-mediated cell-surface chemoenzymatic glycan modification. Nature Communications, 2019, 10, 1799.	12.8	46
9	Unique CDR3 epitope targeting by CAR-T cells is a viable approach for treating T-cell malignancies. Leukemia, 2019, 33, 2315-2319.	7.2	17
10	A complex epistatic network limits the mutational reversibility in the influenza hemagglutinin receptor-binding site. Nature Communications, 2018, 9, 1264.	12.8	58
11	Autocrine-based selection of ligands for personalized CAR-T therapy of lymphoma. Science Advances, 2018, 4, eaau4580.	10.3	19
12	Selection of an ASIC1a-blocking combinatorial antibody that protects cells from ischemic death. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7469-E7477.	7.1	48
13	Fully human agonist antibodies to TrkB using autocrine cell-based selection from a combinatorial antibody library. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7023-E7032.	7.1	33
14	Antibody selection using clonal cocultivation of <i>Escherichia coli</i> and eukaryotic cells in miniecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6145-E6151.	7.1	9
15	Immunochemical engineering of cell surfaces to generate virus resistance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4655-4660.	7.1	6
16	In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity. Nature Communications, 2017, 8, 15371.	12.8	55
17	Diversity of Functionally Permissive Sequences in the Receptor-Binding Site of Influenza Hemagglutinin. Cell Host and Microbe, 2017, 21, 742-753.e8.	11.0	59
18	Antibody 27F3 Broadly Targets Influenza A Group 1 and 2 Hemagglutinins through a Further Variation in VH1-69 Antibody Orientation on the HA Stem. Cell Reports, 2017, 20, 2935-2943.	6.4	103

#	Article	IF	Citations
19	Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries. Nature Biotechnology, 2017, 35, 960-968.	17.5	34
20	Antibodies from combinatorial libraries use functional receptor pleiotropism to regulate cell fates. Quarterly Reviews of Biophysics, 2015, 48, 389-394.	5.7	16
21	Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects. Nature Communications, 2015, 6, 8918.	12.8	124
22	Selection of multiple agonist antibodies from intracellular combinatorial libraries reveals that cellular receptors are functionally pleiotropic. Current Opinion in Chemical Biology, 2015, 26, 1-7.	6.1	18
23	Agonist antibody that induces human malignant cells to kill one another. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6158-E6165.	7.1	16
24	Prevention of Cell Death by Antibodies Selected from Intracellular Combinatorial Libraries. Chemistry and Biology, 2014, 21, 274-283.	6.0	35
25	A proximity based general method for identification of ligand and receptor interactions in living cells. Biochemical and Biophysical Research Communications, 2014, 454, 251-255.	2.1	13
26	REGULATING CELLULAR LIFE DEATH AND DEVELOPMENT USING INTRACELLULAR COMBINATORIAL ANTIBODY LIBRARIES. , $2014,$, .		0
27	Autocrine signaling based selection of combinatorial antibodies that transdifferentiate human stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8099-8104.	7.1	58