## Zahra Kalantari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6213256/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Development of a novel hybrid multi-boosting neural network model for spatial prediction of urban<br>flood. Geocarto International, 2022, 37, 5716-5741.                                                        | 3.5 | 16        |
| 2  | Sustainable futures over the next decade are rooted in soil science. European Journal of Soil Science, 2022, 73, .                                                                                              | 3.9 | 19        |
| 3  | Links between food trade, climate change and food security in developed countries: A case study of<br>Sweden. Ambio, 2022, 51, 943-954.                                                                         | 5.5 | 13        |
| 4  | Soil degradation in the European Mediterranean region: Processes, status and consequences. Science of the Total Environment, 2022, 805, 150106.                                                                 | 8.0 | 168       |
| 5  | Flood legislation and land policy framework of EU and nonâ€EU countries in Southern Europe. Wiley<br>Interdisciplinary Reviews: Water, 2022, 9, e15596.                                                         | 6.5 | 6         |
| 6  | Contribution of physical and anthropogenic factors to gully erosion initiation. Catena, 2022, 210, 105925.                                                                                                      | 5.0 | 27        |
| 7  | Urbanisation-driven land degradation and socioeconomic challenges in peri-urban areas: Insights<br>from Southern Europe. Ambio, 2022, 51, 1446-1458.                                                            | 5.5 | 57        |
| 8  | Selecting potential locations for groundwater recharge by means of remote sensing and GIS and<br>weighting based on Boolean logic and analytic hierarchy process. Environmental Earth Sciences, 2022,<br>81, 1. | 2.7 | 8         |
| 9  | Ambio fit for the 2020s. Ambio, 2022, 51, 1091-1093.                                                                                                                                                            | 5.5 | 0         |
| 10 | First Mile/Last Mile Problems in Smart and Sustainable Cities: A Case Study in Stockholm County.<br>Journal of Urban Technology, 2022, 29, 115-137.                                                             | 4.7 | 7         |
| 11 | Identifying barriers for nature-based solutions in flood risk management: An interdisciplinary<br>overview using expert community approach. Journal of Environmental Management, 2022, 310, 114725.             | 7.8 | 41        |
| 12 | Large-scale dynamic flood monitoring in an arid-zone floodplain using SAR data and hybrid<br>machine-learning models. Journal of Hydrology, 2022, 611, 128001.                                                  | 5.4 | 14        |
| 13 | Distinction of driver contributions to wetland decline and their associated basin hydrology around<br>Iran. Journal of Hydrology: Regional Studies, 2022, 42, 101126.                                           | 2.4 | 5         |
| 14 | Liveable cities: Current environmental challenges and paths to urban sustainability. Journal of Environmental Management, 2021, 277, 111458.                                                                    | 7.8 | 12        |
| 15 | The bio-based economy, 2030 Agenda, and strong sustainability – A regional-scale assessment of sustainability goal interactions. Journal of Cleaner Production, 2021, 283, 125174.                              | 9.3 | 21        |
| 16 | Soil Health in Urban Protected Areas and Pathways for Sustainable Development. , 2021, , 576-584.                                                                                                               |     | 0         |
| 17 | Rainfall-runoff-erosion processes in urban areas. , 2021, , 481-498.                                                                                                                                            |     | 2         |
| 18 | Predicting groundwater level fluctuations under climate change scenarios for Tasuj plain, Iran.<br>Arabian Journal of Geosciences, 2021, 14, 1.                                                                 | 1.3 | 31        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Hydro-climatic changes of wetlandscapes across the world. Scientific Reports, 2021, 11, 2754.                                                                                                               | 3.3 | 10        |
| 20 | Enlivening our cities: Towards urban sustainability and resilience. Ambio, 2021, 50, 1629-1633.                                                                                                             | 5.5 | 9         |
| 21 | Hydrological Processes in Eucalypt and Pine Forested Headwater Catchments within Mediterranean<br>Region. Water (Switzerland), 2021, 13, 1418.                                                              | 2.7 | 2         |
| 22 | Spatio-Temporal Assessment of Global Gridded Evapotranspiration Datasets across Iran. Remote Sensing, 2021, 13, 1816.                                                                                       | 4.0 | 20        |
| 23 | Mapping the Vulnerability of Arctic Wetlands to Global Warming. Earth's Future, 2021, 9, e2020EF001858.                                                                                                     | 6.3 | 19        |
| 24 | Arctic wetland system dynamics under climate warming. Wiley Interdisciplinary Reviews: Water, 2021,<br>8, e1526.                                                                                            | 6.5 | 19        |
| 25 | A more complete accounting of greenhouse gas emissions and sequestration in urban landscapes.<br>Anthropocene, 2021, 34, 100296.                                                                            | 3.3 | 10        |
| 26 | Distinguishing active and legacy source contributions to stream water quality: Comparative quantification for chloride and metals. Hydrological Processes, 2021, 35, e14280.                                | 2.6 | 6         |
| 27 | Interconnected governance and social barriers impeding the restoration process of Lake Urmia.<br>Journal of Hydrology, 2021, 598, 126489.                                                                   | 5.4 | 23        |
| 28 | The role of soils in regulation and provision of blue and green water. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200175.                                         | 4.0 | 45        |
| 29 | Application of the Adaptive Cycle and Panarchy in La Marjaleria Social-Ecological System: Reflections<br>for Operability. Land, 2021, 10, 980.                                                              | 2.9 | 2         |
| 30 | Dataâ€Driven Worldwide Quantification of Largeâ€Scale Hydroclimatic Covariation Patterns and<br>Comparison With Reanalysis and Earth System Modeling. Water Resources Research, 2021, 57,<br>e2020WR029377. | 4.2 | 8         |
| 31 | Flood Mitigation in Mediterranean Coastal Regions: Problems, Solutions, and Stakeholder<br>Involvement. Sustainability, 2021, 13, 10474.                                                                    | 3.2 | 16        |
| 32 | How ecosystems services drive urban growth: Integrating nature-based solutions. Anthropocene, 2021, 35, 100297.                                                                                             | 3.3 | 50        |
| 33 | Contribution of Satellite-Based Precipitation in Hydrological Rainfall–Runoff Modeling: Case Study<br>of the Hammam Boughrara Region in Algeria. Earth Systems and Environment, 2021, 5, 873-881.           | 6.2 | 3         |
| 34 | Urban flood modeling using deep-learning approaches in Seoul, South Korea. Journal of Hydrology,<br>2021, 601, 126684.                                                                                      | 5.4 | 65        |
| 35 | Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air, Soil and Water Research, 2021, 14, 117862212110281.                                                     | 2.5 | 53        |
| 36 | Healthy ecosystems for human and animal health: Science diplomacy for responsible development in the Arctic. Polar Record, 2021, 57, .                                                                      | 0.8 | 3         |

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Agro-ecological services delivered by legume cover crops grown in succession with grain corn crops<br>in the Mediterranean region. Open Agriculture, 2021, 6, 609-626.            | 1.7 | 6         |
| 38 | Linking climate and infectious disease trends in the Northern/Arctic Region. Scientific Reports, 2021, 11, 20678.                                                                 | 3.3 | 12        |
| 39 | Two Comprehensive and Practical Methods for Simulating Pan Evaporation under Different Climatic<br>Conditions in Iran. Water (Switzerland), 2021, 13, 2814.                       | 2.7 | 8         |
| 40 | Modeling Climate Sensitive Infectious Diseases in the Arctic. Springer Polar Sciences, 2021, , 93-111.                                                                            | 0.1 | 0         |
| 41 | Nature-Based Solutions for Flood Mitigation and Resilience in Urban Areas. Handbook of Environmental Chemistry, 2021, , 59-78.                                                    | 0.4 | 8         |
| 42 | Using Landscape Connectivity to Identify Suitable Locations for Nature-Based Solutions to Reduce<br>Flood Risk. Handbook of Environmental Chemistry, 2021, , 339-354.             | 0.4 | 2         |
| 43 | Comparative quantification of local climate regulation by green and blue urban areas in cities across Europe. Scientific Reports, 2021, 11, 23872.                                | 3.3 | 9         |
| 44 | Link between Land Use and Flood Risk Assessment in Urban Areas. Proceedings (mdpi), 2020, 30, .                                                                                   | 0.2 | 1         |
| 45 | Changes in Net Global Surface Water Area Since 1985. Proceedings (mdpi), 2020, 30, .                                                                                              | 0.2 | Ο         |
| 46 | Natureâ€based solutions for meeting environmental and socioâ€economic challenges in land management<br>and development. Land Degradation and Development, 2020, 31, 1867-1870.    | 3.9 | 16        |
| 47 | Watershed-Based Evaluation of Automatic Sensor Data: Water Quality and Hydroclimatic Relationships. Sustainability, 2020, 12, 396.                                                | 3.2 | 2         |
| 48 | Understanding interactions between urban development policies and GHG emissions: A case study in<br>StockholmÂRegion. Ambio, 2020, 49, 1313-1327.                                 | 5.5 | 57        |
| 49 | Capability and robustness of novel hybridized models used for drought hazard modeling in southeast<br>Queensland, Australia. Science of the Total Environment, 2020, 718, 134656. | 8.0 | 28        |
| 50 | Prediction of factors affecting activation of soil erosion by mathematical modeling at pedon scale under laboratory conditions. Scientific Reports, 2020, 10, 20163.              | 3.3 | 22        |
| 51 | Development of novel hybridized models for urban flood susceptibility mapping. Scientific Reports, 2020, 10, 12937.                                                               | 3.3 | 68        |
| 52 | Effects of Water Level Decline in Lake Urmia, Iran, on Local Climate Conditions. Water (Switzerland),<br>2020, 12, 2153.                                                          | 2.7 | 22        |
| 53 | Inventory and Connectivity Assessment of Wetlands in Northern Landscapes with a Depression-Based DEM Method. Water (Switzerland), 2020, 12, 3355.                                 | 2.7 | 4         |
| 54 | Effectiveness of Nature-Based Solutions in Mitigating Flood Hazard in a Mediterranean Peri-Urban<br>Catchment. Water (Switzerland), 2020, 12, 2893.                               | 2.7 | 25        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Benefits of Combining Satellite-Derived Snow Cover Data and Discharge Data to Calibrate a Glaciated<br>Catchment in Sub-Arctic Iceland. Water (Switzerland), 2020, 12, 975.                                             | 2.7 | 7         |
| 56 | TET: An automated tool for evaluating suitable check-dam sites based on sediment trapping efficiency.<br>Journal of Cleaner Production, 2020, 266, 122051.                                                              | 9.3 | 8         |
| 57 | Close co-variation between soil moisture and runoff emerging from multi-catchment data across<br>Europe. Scientific Reports, 2020, 10, 4817.                                                                            | 3.3 | 25        |
| 58 | Impact of Land-Use Changes on Spatiotemporal Suspended Sediment Dynamics within a Peri-Urban<br>Catchment. Water (Switzerland), 2020, 12, 665.                                                                          | 2.7 | 15        |
| 59 | Variability and change in the hydro-climate and water resources of Iran over a recent 30-year period.<br>Scientific Reports, 2020, 10, 7450.                                                                            | 3.3 | 48        |
| 60 | Unraveling Latent Aspects of Urban Expansion: Desertification Risk Reveals More. International<br>Journal of Environmental Research and Public Health, 2020, 17, 4001.                                                  | 2.6 | 10        |
| 61 | Open-source planning support system for sustainable regional planning: A case study of Stockholm<br>County, Sweden. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 1508-1523.                  | 2.0 | 13        |
| 62 | A Modeling Comparison of Groundwater Potential Mapping in a Mountain Bedrock Aquifer: QUEST,<br>GARP, and RF Models. Water (Switzerland), 2020, 12, 679.                                                                | 2.7 | 34        |
| 63 | Global Wetting by Seasonal Surface Water Over the Last Decades. Earth's Future, 2020, 8, e2019EF001449.                                                                                                                 | 6.3 | 17        |
| 64 | Implications of Projected Hydroclimatic Change for Tularemia Outbreaks in High-Risk Areas across<br>Sweden. International Journal of Environmental Research and Public Health, 2020, 17, 6786.                          | 2.6 | 8         |
| 65 | Data for wetlandscapes and their changes around the world. Earth System Science Data, 2020, 12, 1083-1100.                                                                                                              | 9.9 | 12        |
| 66 | Potential for Hydroclimatically Driven Shifts in Infectious Disease Outbreaks: The Case of Tularemia in<br>High-Latitude Regions. International Journal of Environmental Research and Public Health, 2019, 16,<br>3717. | 2.6 | 10        |
| 67 | A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Science of the Total Environment, 2019, 660, 443-458.                                       | 8.0 | 189       |
| 68 | Multi-Hazard Exposure Mapping Using Machine Learning Techniques: A Case Study from Iran. Remote<br>Sensing, 2019, 11, 1943.                                                                                             | 4.0 | 56        |
| 69 | Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture. Science of the Total Environment, 2019, 661, 393-406.        | 8.0 | 76        |
| 70 | Using comparative socio-ecological modeling to support Climate Action Planning (CAP). Journal of Cleaner Production, 2019, 232, 30-42.                                                                                  | 9.3 | 43        |
| 71 | Meeting sustainable development challenges in growing cities: Coupled social-ecological systems<br>modeling of land use and water changes. Journal of Environmental Management, 2019, 245, 471-480.                     | 7.8 | 61        |
| 72 | Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences<br>Journal, 2019, 64, 1141-1158.                                                                                     | 2.6 | 474       |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | An Automated Python Language-Based Tool for Creating Absence Samples in Groundwater Potential<br>Mapping. Remote Sensing, 2019, 11, 1375.                                                                                                          | 4.0 | 20        |
| 74 | Change Drivers and Impacts in Arctic Wetland Landscapes—Literature Review and Gap Analysis. Water (Switzerland), 2019, 11, 722.                                                                                                                    | 2.7 | 11        |
| 75 | The Potential of Wetlands in Achieving the Sustainable Development Goals of the 2030 Agenda. Water<br>(Switzerland), 2019, 11, 609.                                                                                                                | 2.7 | 48        |
| 76 | GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble<br>with linear multivariate regression and boosted regression tree algorithms. Journal of Mountain<br>Science, 2019, 16, 595-618.          | 2.0 | 110       |
| 77 | Priorities and Interactions of Sustainable Development Goals (SDGs) with Focus on Wetlands. Water<br>(Switzerland), 2019, 11, 619.                                                                                                                 | 2.7 | 75        |
| 78 | Evolution of Green Areas in Europe—A Comparison Between Three Urban Areas. Proceedings (mdpi),<br>2019, 30, 15.                                                                                                                                    | 0.2 | 0         |
| 79 | GIS-Based Site Selection for Check Dams in Watersheds: Considering Geomorphometric and<br>Topo-Hydrological Factors. Sustainability, 2019, 11, 5639.                                                                                               | 3.2 | 53        |
| 80 | Urban Areas. Advances in Chemical Pollution, Environmental Management and Protection, 2019, 4, 207-249.                                                                                                                                            | 0.5 | 7         |
| 81 | Contrasting Hydroclimatic Modelâ€Data Agreements Over the Nordicâ€Arctic Region. Earth's Future, 2019,<br>7, 1270-1282.                                                                                                                            | 6.3 | 7         |
| 82 | The impact of political, socio-economic and cultural factors on implementing environment friendly<br>techniques for sustainable land management and climate change mitigation in Romania. Science of the<br>Total Environment, 2019, 654, 418-429. | 8.0 | 34        |
| 83 | Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better<br>understand the Lake Urmia tragedy. Journal of Hydrology, 2019, 569, 203-217.                                                                    | 5.4 | 171       |
| 84 | Commentary: The Blauzone Rheintal Approach from a Natural Hazard Perspective—Challenges to<br>Establish Effective Flood Defence Management Programs. , 2019, , 161-167.                                                                            |     | 1         |
| 85 | The superior effect of nature based solutions in land management for enhancing ecosystem services.<br>Science of the Total Environment, 2018, 610-611, 997-1009.                                                                                   | 8.0 | 606       |
| 86 | H2 effect in Chevron–Phillips ethylene trimerization catalytic system: an experimental and theoretical<br>investigation. Polymer Bulletin, 2018, 75, 3555-3565.                                                                                    | 3.3 | 8         |
| 87 | Links between Nordic and Arctic hydroclimate and vegetation changes: Contribution to possible<br>landscapeâ€scale natureâ€based solutions. Land Degradation and Development, 2018, 29, 3663-3673.                                                  | 3.9 | 9         |
| 88 | Increased access to nearby green–blue areas associated with greater metropolitan population<br>wellâ€being. Land Degradation and Development, 2018, 29, 3607-3616.                                                                                 | 3.9 | 18        |
| 89 | Nature-based solutions for flood-drought risk mitigation in vulnerable urbanizing parts of East-Africa. Current Opinion in Environmental Science and Health, 2018, 5, 73-78.                                                                       | 4.1 | 91        |
| 90 | Sociohydrology modeling for complex urban environments in support of integrated land and water resource management practices. Land Degradation and Development, 2018, 29, 3639-3652.                                                               | 3.9 | 48        |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Soil moisture remote-sensing applications for identification of flood-prone areas along transport infrastructure. Environmental Earth Sciences, 2018, 77, 1.                                                          | 2.7 | 45        |
| 92  | Human impacts on soil. Science of the Total Environment, 2018, 644, 830-834.                                                                                                                                          | 8.0 | 24        |
| 93  | Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications. Science of the Total Environment, 2017, 581-582, 386-398.                             | 8.0 | 68        |
| 94  | Distinction, quantification and mapping of potential and realized supply-demand of flow-dependent ecosystem services. Science of the Total Environment, 2017, 593-594, 599-609.                                       | 8.0 | 109       |
| 95  | Urbanization Development under Climate Change: Hydrological Responses in a Periâ€Urban<br>Mediterranean Catchment. Land Degradation and Development, 2017, 28, 2207-2221.                                             | 3.9 | 59        |
| 96  | Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering, 2017, 108, 489-497.                                                           | 3.6 | 217       |
| 97  | Natural Hazard Susceptibility Assessment for Road Planning Using Spatial Multi-Criteria Analysis.<br>Environmental Management, 2017, 60, 823-851.                                                                     | 2.7 | 35        |
| 98  | Integrating ecosystem services in the assessment of urban energy trajectories – A study of the Stockholm Region. Energy Policy, 2017, 100, 338-349.                                                                   | 8.8 | 29        |
| 99  | Accessibility of Water-Related Cultural Ecosystem Services through Public Transport—A Model for<br>Planning Support in the Stockholm Region. Sustainability, 2017, 9, 346.                                            | 3.2 | 10        |
| 100 | Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation. Earth System Dynamics, 2017, 8, 225-233.                                                                                           | 7.1 | 122       |
| 101 | Predicting and communicating flood risk of transport infrastructure based on watershed characteristics. Journal of Environmental Management, 2016, 182, 505-518.                                                      | 7.8 | 35        |
| 102 | Modeller subjectivity and calibration impacts on hydrological model applications: An event-based comparison for a road-adjacent catchment in south-east Norway. Science of the Total Environment, 2015, 502, 315-329. | 8.0 | 17        |
| 103 | On the utilization of hydrological modelling for road drainage design under climate and land use change. Science of the Total Environment, 2014, 475, 97-103.                                                         | 8.0 | 28        |
| 104 | Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment. Science of the Total Environment, 2014, 466-467, 741-754.                                                | 8.0 | 66        |
| 105 | A method for mapping flood hazard along roads. Journal of Environmental Management, 2014, 133, 69-77.                                                                                                                 | 7.8 | 61        |
| 106 | The calculation of vibrational energy levels of polyatomic molecules including anharmonic effect using contact transformation perturbation method. International Journal of Quantum Chemistry, 2013, 113, 1180-1191.  | 2.0 | 1         |
| 107 | Road Drainage in Sweden: Current Practice and Suggestions for Adaptation to Climate Change.<br>Journal of Infrastructure Systems, 2013, 19, 147-156.                                                                  | 1.8 | 37        |