
Vitaly Tseluikin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6213066/publications.pdf Version: 2024-02-01

VITALY TSELLIKIN

#	Article	IF	CITATIONS
1	Epoxy Nanocomposites Reinforced with Functionalized Carbon Nanotubes. Polymers, 2020, 12, 1816.	2.0	37
2	On the Structure and Properties of Composite Electrochemical Coatings. A Review. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 254-266.	0.3	26
3	Composite electrochemical coatings: Preparation, structure, properties. Protection of Metals and Physical Chemistry of Surfaces, 2009, 45, 312-326.	0.3	21
4	Electrochemical Synthesis of Multilayer Graphene Oxide by Anodic Oxidation of Disperse Graphite. Russian Journal of Electrochemistry, 2019, 55, 1196-1202.	0.3	21
5	Electrodeposition of zinc–nickel–carbon nanotubes composite coatings in a reversing mode. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 1040-1042.	0.3	18
6	Composite coatings modified with nanoparticles: Structure and properties. Nanotechnologies in Russia, 2014, 9, 1-14.	0.7	17
7	Electrodeposition and properties of composite coatings modified by fullerene C60. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 433-436.	0.3	16
8	Electrochemical deposition and properties of composite coatings consisting of zinc and carbon nanotubes. Russian Journal of Applied Chemistry, 2015, 88, 272-274.	0.1	15
9	Pulsed Electrodeposition of Composite Coatings Based on Zinc–Nickel Alloy. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 453-456.	0.3	15
10	Preparation of Aqueous Colloidal Dispersion of C60 Fullerene. Colloid Journal, 2005, 67, 522-523.	0.5	14
11	Deposition of zinc-carbon nanotube composite coatings in the pulse-reverse mode. Russian Journal of Applied Chemistry, 2014, 87, 1251-1253.	0.1	14
12	Colloidal dispersion of fullerene C60 free of organic solvents. Russian Journal of Applied Chemistry, 2006, 79, 325-326.	0.1	13
13	Electrodeposition and properties of composite coatings based on nickel. Russian Journal of Applied Chemistry, 2011, 84, 2005-2007.	0.1	13
14	Electrodeposition of nickel-fullerene C60 composition coatings. Protection of Metals, 2007, 43, 388-390.	0.2	10
15	Pulsed Electrodeposition and Properties of Nickel-Based Composite Coatings Modified with Graphene Oxide. Coatings, 2022, 12, 656.	1.2	9
16	Tribological properties of composite electrochemical nickel-based coatings. Journal of Friction and Wear, 2010, 31, 356-358.	0.1	7
17	Synthesis and properties of water-soluble derivatives of fullerene C60. Russian Journal of Applied Chemistry, 2006, 79, 1001-1004.	0.1	6
18	Corrosion Resistance of Composite Coatings Based on Zinc. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe Mashinostroenie), 2016, 52, 560-562.	0.1	5

VITALY TSELUIKIN

#	Article	IF	CITATIONS
19	Anodic dissolution of the copper-nickel alloy under transient conditions. Protection of Metals, 2008, 44, 521-523.	0.2	4
20	Synthesis and properties of zinc–nickel–carbon nanotube composite coatings. Russian Journal of Applied Chemistry, 2016, 89, 1027-1030.	0.1	4
21	Electrodeposition of Graphene Oxide Modified Composite Coatings Based on Nickel-Chromium Alloy. Crystals, 2021, 11, 415.	1.0	4
22	Carbon and Carbon-Based Composite Thin Films/Coatings: Synthesis, Properties and Applications. Coatings, 2022, 12, 907.	1.2	4
23	Modification of metal surfaces with C60 fullerene. Nanotechnologies in Russia, 2008, 3, 456-459.	0.7	3
24	Preparation of colloidal dispersions of C60 fullerene. Nanotechnologies in Russia, 2011, 6, 272-274.	0.7	3
25	Preparation and Properties of Composite Chromium–Carbon Nanotube Coatings. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe Mashinostroenie), 2015, 51, 54-57.	0.1	3
26	On the Electrodeposition of Zinc-Based Composition Coatings in the Pulse Mode. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 1047-1049.	0.3	3
27	Preparation and Properties of Graphite Nitrate-Modified Composite Electrochemical Coatings Based on a Nickel–Chromium Alloy. Inorganic Materials, 2019, 55, 656-658.	0.2	3
28	On the Electrochemical Deposition and Properties of Nickel-Based Composite Coatings. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 374-378.	0.3	3
29	Synthesis of Multilayer Graphene Oxide in Electrochemical Graphite Dispersion in H2SO4. Russian Journal of Applied Chemistry, 2020, 93, 219-224.	0.1	3
30	Electrodeposition and Corrosion Properties of Nickel–Graphene Oxide Composite Coatings. Materials, 2021, 14, 5624.	1.3	3
31	Iron-nickel-fullerene C60 composite electrochemical coatings. Inorganic Materials: Applied Research, 2011, 2, 521-523.	0.1	2
32	Electrodeposition of nickel-based composite coatings in the reversible mode. Russian Journal of Applied Chemistry, 2015, 88, 2074-2077.	0.1	2
33	Study of Electrodeposition and Functional Properties of Nickel-Graphite Bisulfate Composite Coatings. Russian Journal of Applied Chemistry, 2019, 92, 614-619.	0.1	2
34	Aqueous dispersions of C60 fullerene. Colloid Journal, 2007, 69, 259-260.	0.5	1
35	Deposition and tribological behavior of composite nickel coatings. Journal of Friction and Wear, 2011, 32, 242-245.	0.1	1
36	Electrodeposition of nickel-based composite coatings from a sulfamate electrolyte. Russian Journal of Applied Chemistry, 2017, 90, 492-495.	0.1	1

VITALY TSELUIKIN

#	Article	IF	CITATIONS
37	Tribological Properties of Electrochemical Coatings Based on Nickel. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe Mashinostroenie), 2018, 54, 521-524.	0.1	1
38	Preparing Aqueous Dispersions of C60 Fullerene. Russian Journal of Physical Chemistry A, 2018, 92, 2345-2347.	0.1	1
39	Electrochemical synthesis of multilayer graphene oxide and its application in composite materials. IOP Conference Series: Materials Science and Engineering, 2019, 693, 012003.	0.3	1
40	Electrochemical Deposition of Zinc-Based Composite Coatings Modified with Carbon Nanotubes from Alkaline Electrolyte. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 1186-1189.	0.3	1
41	Electrochemical Deposition and Properties of Nickel—Chromium–Graphene Oxide Composite Coatings. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57, 1231-1234.	0.3	1
42	Viscous Flow of Concentrated Aqueous Solutions of NiCl2 + FeCl2. Russian Journal of Applied Chemistry, 2005, 78, 1791-1794.	0.1	0
43	Viscous flow of aqueous solutions of copper sulfate in the temperature range 20–50°C. Russian Journal of Applied Chemistry, 2007, 80, 1776-1778.	0.1	0
44	Production of composite electroplated nickel-fullerene C60 coatings. Russian Journal of Applied Chemistry, 2008, 81, 1184-1186.	0.1	0
45	Preparation of fullerene Đ¡60 dispersions in water. Colloid Journal, 2016, 78, 730-732.	0.5	0
46	Anodic Dissolution of Iron–Nickel Alloy under Non-Steady-State Conditions. Russian Journal of Electrochemistry, 2017, 53, 1290-1293.	0.3	0
47	Electrodeposition of Zinc–Nickel–CNT Composite Coatings in the Pulsed Mode. Russian Journal of Applied Chemistry, 2018, 91, 384-387.	0.1	Ο