
Mahdi Karimi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6212963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chemical Society Reviews, 2016, 45, 1457-1501.	38.1	1,152
2	Antimicrobial strategies centered around reactive oxygen species – bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiology Reviews, 2013, 37, 955-989.	8.6	785
3	Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine, 2019, 14, 93-126.	3.3	376
4	Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Advanced Drug Delivery Reviews, 2018, 123, 33-64.	13.7	339
5	Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light. Journal of the American Chemical Society, 2017, 139, 4584-4610.	13.7	335
6	Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances. ACS Applied Materials & Interfaces, 2016, 8, 21107-21133.	8.0	305
7	Point-of-care microfluidic devices for pathogen detection. Biosensors and Bioelectronics, 2018, 117, 112-128.	10.1	292
8	Albumin nanostructures as advanced drug delivery systems. Expert Opinion on Drug Delivery, 2016, 13, 1609-1623.	5.0	271
9	Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnology Reviews, 2017, 6, 301-329.	5.8	251
10	<scp>pH</scp> ‣ensitive stimulusâ€responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 696-716.	6.1	171
11	Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. International Journal of Nanomedicine, 2021, Volume 16, 1681-1706.	6.7	168
12	Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opinion on Drug Delivery, 2015, 12, 1089-1105.	5.0	145
13	Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Advanced Drug Delivery Reviews, 2016, 106, 45-62.	13.7	133
14	Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review. ChemistrySelect, 2020, 5, 10200-10219.	1.5	126
15	Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today, 2020, 34, 100914.	11.9	125
16	Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale, 2017, 9, 1356-1392.	5.6	122
17	<p>Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat?</p> . International Journal of Nanomedicine, 2020, Volume 15, 9469-9496.	6.7	121
18	Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnology Reviews, 2018, 7, 95-122.	5.8	105

Mahdi Karimi

#	Article	IF	CITATIONS
19	Microfluidic systems for stem cell-based neural tissue engineering. Lab on A Chip, 2016, 16, 2551-2571.	6.0	100
20	Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work?. Biotechnology Advances, 2018, 36, 968-985.	11.7	95
21	Carbon nanotubes part I: preparation of a novel and versatile drug-delivery vehicle. Expert Opinion on Drug Delivery, 2015, 12, 1071-1087.	5.0	88
22	Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Molecular Neurobiology, 2019, 56, 8489-8512.	4.0	84
23	Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Critical Reviews in Biotechnology, 2018, 38, 47-67.	9.0	81
24	<i>In-vivo</i> monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence, 2018, 9, 28-63.	4.4	73
25	The novel albumin–chitosan core–shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation. Journal of Nanoparticle Research, 2013, 15, 1651.	1.9	70
26	Smart mesoporous silica nanoparticles for controlled-release drug delivery. Nanotechnology Reviews, 2016, 5, .	5.8	70
27	Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine, 2016, 11, 513-530.	3.3	60
28	Optical assays based on colloidal inorganic nanoparticles. Analyst, The, 2018, 143, 3249-3283.	3.5	58
29	Noble metal nanostructures in optical biosensors: Basics, and their introduction to anti-doping detection. TrAC - Trends in Analytical Chemistry, 2018, 100, 116-135.	11.4	46
30	Three-dimensional graphene foam as a conductive scaffold for cardiac tissue engineering. Journal of Biomaterials Applications, 2019, 34, 74-85.	2.4	41
31	Evaluation of Chitosan-Tripolyphosphate Nanoparticles as a p-shRNA Delivery Vector: Formulation, Optimization and Cellular Uptake Study. Journal of Nanopharmaceutics and Drug Delivery, 2013, 1, 266-278.	0.3	40
32	Photoluminescent functionalized carbon dots for CRISPR delivery: synthesis, optimization and cellular investigation. Nanotechnology, 2019, 30, 135101.	2.6	38
33	Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	36
34	Nanotechnology for photodynamic therapy: a perspective from the Laboratory of Dr. Michael R. Hamblin in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School. Nanotechnology Reviews, 2015, 4, 359-372.	5.8	35
35	Nanotechnology against COVID-19: Immunization, diagnostic and therapeutic studies. Journal of Controlled Release, 2021, 336, 354-374.	9.9	30
36	Hydrophobic lapatinib encapsulated dextran-chitosan nanoparticles using a toxic solvent free method: fabrication, release property & in vitro anti-cancer activity. Materials Science and Engineering C, 2017, 74, 413-421.	7.3	23

Mahdi Karimi

#	Article	IF	CITATIONS
37	The effect of chitosan-tripolyphosphate nanoparticles on maturation and function of dendritic cells. Comparative Clinical Pathology, 2014, 23, 1421-1427.	0.7	19
38	Infections, inflammation, and risk of neuropsychiatric disorders: the neglected role of "co-infection― Heliyon, 2020, 6, e05645.	3.2	17
39	Highly Photoluminescent Nitrogen- and Zinc-Doped Carbon Dots for Efficient Delivery of CRISPR/Cas9 and mRNA. Bioconjugate Chemistry, 2021, 32, 1875-1887.	3.6	17
40	Polyethylenimine-Functionalized Carbon Dots for Delivery of CRISPR/Cas9 Complexes. ACS Applied Bio Materials, 2021, 4, 7979-7992.	4.6	14
41	Histidineâ€enhanced gene delivery systems: The state of the art. Journal of Gene Medicine, 2022, 24, e3415.	2.8	13
42	Redox-Sensitive Smart Nanosystems for Drug and Gene Delivery. Current Organic Chemistry, 2016, 20, 2949-2959.	1.6	12
43	miR-181b and miR-204 suppress the VSMC proliferation and migration by downregulation of HCK. Microvascular Research, 2021, 136, 104172.	2.5	10
44	Optimization of miRNA delivery by using a polymeric conjugate based on deoxycholic acid-modified polyethylenimine. International Journal of Pharmaceutics, 2019, 565, 391-408.	5.2	7
45	Antibacterial, antibiofilm, anti-inflammatory, and wound healing effects of nanoscale multifunctional cationic alternating copolymers. Bioorganic Chemistry, 2022, 119, 105550.	4.1	7
46	Synthesis and characterization of vitamin D ₃ -functionalized carbon dots for CRISPR/Cas9 delivery. Nanomedicine, 2021, 16, 1673-1690.	3.3	6
47	Smart arginine-equipped polycationic nanoparticles for p/CRISPR delivery into cells. Nanotechnology, 2022, 33, 075104.	2.6	6
48	Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing. ACS Applied Bio Materials, 2022, 5, 413-437.	4.6	6
49	The Increase of pFAK and THBS1 Protein and Gene Expression Levels in Vascular Smooth Muscle Cells by Histamine-treated M1 Macrophages. Iranian Journal of Allergy, Asthma and Immunology, 2019, 18, 72-79.	0.4	4
50	Curcumin/Graphene Quantum Dot-Loaded Bacterial Nanocellulose Platform for Drug Delivery and Wound Dressing. Nano, 2022, 17, .	1.0	4
51	An overview of microfluidic devices. , 2021, , 1-22.		3
52	<i>In vitro</i> elimination of EL4 cancer cells from spermatogonia stem cells by miRNA-143- and 206-loaded folic acid-conjugated PLGA nanoparticles. Nanomedicine, 2022, 17, 531-545.	3.3	3
53	Light-sensitive nanocarriers. , 0, , .		2
54	Magnetic-responsive nanocarriers. , 0, , .		2

#	Article	IF	CITATIONS
55	Temperature-sensitive nanocarriers. , 0, , 3-1-3-20.		1
56	Poly‣‣ysine/Hyaluronan Nanocarriers As a Novel Nanosystem for Gene Delivery. Journal of Microscopy, 2022, , .	1.8	1
57	The Role of MicroRNA 143 and MicroRNA 206 in The Regulation of Apoptosis in Mouse Lukemia Cancer Cells and Spermatogonial Cells. Cell Journal, 2021, 23, 544-551.	0.2	Ο