
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6212716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances. Journal of Hazardous Materials, 2020, 386, 121984.	12.4	271
2	A highly fire-safe and smoke-suppressive single-component epoxy resin with switchable curing temperature and rapid curing rate. Composites Part B: Engineering, 2021, 207, 108601.	12.0	170
3	Synthesis of a Phosphorus/Nitrogen-Containing Additive with Multifunctional Groups and Its Flame-Retardant Effect in Epoxy Resin. Industrial & Engineering Chemistry Research, 2015, 54, 7777-7786.	3.7	163
4	Preparation and flame retardancy of an intumescent flame-retardant epoxy resin system constructed by multiple flame-retardant compositions containing phosphorus and nitrogen heterocycle. Polymer Degradation and Stability, 2015, 119, 251-259.	5.8	149
5	Urchin-like NiO–NiCo ₂ O ₄ heterostructure microsphere catalysts for enhanced rechargeable non-aqueous Li–O ₂ batteries. Nanoscale, 2019, 11, 50-59.	5.6	130
6	Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: Strong bonding of different carbon residues. Polymer Degradation and Stability, 2016, 128, 89-98.	5.8	124
7	Synthesis of a phosphorus/nitrogen-containing compound based on maleimide and cyclotriphosphazene and its flame-retardant mechanism on epoxy resin. Polymer Degradation and Stability, 2016, 126, 9-16.	5.8	124
8	Benzimidazolyl-substituted cyclotriphosphazene derivative as latent flame-retardant curing agent for one-component epoxy resin system with excellent comprehensive performance. Composites Part B: Engineering, 2019, 177, 107440.	12.0	120
9	Synthesis of a novel phosphorus-nitrogen type flame retardant composed of maleimide, triazine-trione, and phosphaphenanthrene and its flame retardant effect on epoxy resin. Polymer Degradation and Stability, 2016, 131, 106-113.	5.8	108
10	Synthesis of a DOPO-containing imidazole curing agent and its application in reactive flame retarded epoxy resin. Polymer Degradation and Stability, 2019, 159, 79-89.	5.8	102
11	High-performance microwave absorption epoxy composites filled with hollow nickel nanoparticles modified graphene via chemical etching method. Composites Science and Technology, 2019, 176, 54-63.	7.8	99
12	A Liquid Phosphaphenanthrene-Derived Imidazole for Improved Flame Retardancy and Smoke Suppression of Epoxy Resin. ACS Applied Polymer Materials, 2020, 2, 3566-3575.	4.4	88
13	A DOPO based reactive flame retardant constructed by multiple heteroaromatic groups and its application on epoxy resin: curing behavior, thermal degradation and flame retardancy. Polymer Degradation and Stability, 2019, 167, 10-20.	5.8	87
14	Synthesis of a phosphaphenanthrene/benzimidazole-based curing agent and its application in flame-retardant epoxy resin. Polymer Degradation and Stability, 2019, 163, 100-109.	5.8	79
15	Green and Facile Synthesis of Bio-Based, Flame-Retardant, Latent Imidazole Curing Agent for Single-Component Epoxy Resin. ACS Applied Polymer Materials, 2022, 4, 3564-3574.	4.4	76
16	Flameâ€retardant performance and mechanism of epoxy thermosets modified with a novel reactive flame retardant containing phosphorus, nitrogen, and sulfur. Polymers for Advanced Technologies, 2018, 29, 497-506.	3.2	71
17	Facile construction of one-component intrinsic flame-retardant epoxy resin system with fast curing ability using imidazole-blocked bismaleimide. Composites Part B: Engineering, 2019, 177, 107380.	12.0	69
18	Design of controlled-morphology NiCo2O4 with tunable and excellent microwave absorption performance. Ceramics International, 2020, 46, 7833-7841.	4.8	68

#	Article	IF	CITATIONS
19	Synthesis of a novel reactive flame retardant containing phosphaphenanthrene and piperidine groups and its application in epoxy resin. Polymer Degradation and Stability, 2017, 146, 250-259.	5.8	65
20	Preparation and flame retardancy of a compounded epoxy resin system composed of phosphorus/nitrogen-containing active compounds. Polymer Degradation and Stability, 2015, 121, 398-406.	5.8	64
21	Combined use of lightweight magnetic Fe 3 O 4 -coated hollow glass spheres and electrically conductive reduced graphene oxide in an epoxy matrix for microwave absorption. Journal of Magnetism and Magnetic Materials, 2016, 401, 209-216.	2.3	61
22	Aminobenzothiazole-substituted cyclotriphosphazene derivative as reactive flame retardant for epoxy resin. Reactive and Functional Polymers, 2020, 146, 104412.	4.1	56
23	The synergistic effect of maleimide and phosphaphenanthrene groups on a reactive flame-retarded epoxy resin system. Polymer Degradation and Stability, 2015, 115, 63-69.	5.8	53
24	Thermal properties and flame retardancy of an intumescent flame-retarded epoxy system containing phosphaphenanthrene, triazine-trione and piperidine. Journal of Thermal Analysis and Calorimetry, 2020, 139, 1099-1110.	3.6	52
25	Synthesis of s-triazine based tri-imidazole derivatives and their application as thermal latent curing agents for epoxy resin. Materials Letters, 2018, 216, 127-130.	2.6	51
26	Synergistic effect between a novel triazineâ€based flame retardant and DOPO/HPCP on epoxy resin. Polymers for Advanced Technologies, 2018, 29, 2774-2783.	3.2	49
27	One-step preparation of CoFe2O4/FeCo/graphite nanosheets hybrid composites with tunable microwave absorption performance. Ceramics International, 2020, 46, 12353-12363.	4.8	45
28	Synthesis of a P/N/S-based flame retardant and its flame retardant effect on epoxy resin. Fire Safety Journal, 2020, 113, 102994.	3.1	45
29	MOF-derived rambutan-like nanoporous carbon/nanotubes/Co composites with efficient microwave absorption property. Materials Letters, 2019, 244, 138-141.	2.6	44
30	A P/N ontaining flame retardant constructed by phosphaphenanthrene, phosphonate, and triazole and its flame retardant mechanism in reducing fire hazards of epoxy resin. Journal of Applied Polymer Science, 2020, 137, 49090.	2.6	42
31	Preparation and characterization of thermally-conductive silane-treated silicon nitride filled polybenzoxazine nanocomposites. Materials Letters, 2015, 155, 34-37.	2.6	41
32	A phosphorus ontaining phenolic derivative and its application in benzoxazine resins: Curing behavior, thermal, and flammability properties. Journal of Applied Polymer Science, 2016, 133, .	2.6	41
33	Synergistic effect of polyhedral iron-cobalt alloys and graphite nanosheets with excellent microwave absorption performance. Journal of Alloys and Compounds, 2020, 829, 154426.	5.5	36
34	Graphitized nitrogen-doped porous carbon composites derived from ZIF-8 as efficient microwave absorption materials. Materials Research Express, 2018, 5, 065602.	1.6	35
35	Synthesis of core–shell Fe3O4@ppy/graphite nanosheets composites with enhanced microwave absorption performance. Materials Letters, 2019, 239, 136-139.	2.6	35
36	Achieving full effective microwave absorption in X band by double-layered design of glass fiber epoxy composites containing MWCNTs and Fe3O4 NPs. Polymer Testing, 2020, 86, 106448.	4.8	35

#	Article	IF	CITATIONS
37	Enhanced electromagnetic interference shielding properties of carbon fiber veil/Fe ₃ O ₄ nanoparticles/epoxy multiscale composites. Materials Research Express, 2017, 4, 126303.	1.6	34
38	Synthesis of maleimide modified imidazole derivatives and their application in one-component epoxy resin systems. Materials Letters, 2019, 234, 379-383.	2.6	34
39	Effects of gamma irradiation on the mechanical and thermal properties of cyanate ester/benzoxazine resin. Radiation Physics and Chemistry, 2017, 141, 110-117.	2.8	32
40	Microwave absorption properties of lightweight absorber based on Fe50Ni50-coated poly(acrylonitrile) microspheres and reduced graphene oxide composites. Journal of Magnetism and Magnetic Materials, 2016, 413, 81-88.	2.3	31
41	ZIF-67-derived micron-sized cobalt-doped porous carbon-based microwave absorbers with g-C3N4 as template. Ceramics International, 2021, 47, 11506-11513.	4.8	30
42	Enhanced microwave absorption properties of epoxy composites containing graphene decorated with core–shell Fe3O4@polypyrrole nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 12122-12131.	2.2	27
43	Fabrication, structure, and microwave absorbing properties of plate-like BaFe12O19@ZnFe2O4/MWCNTs nanocomposites. Materials Letters, 2019, 253, 46-49.	2.6	25
44	Design of A High Performance Zeolite/Polyimide Composite Separator for Lithium-Ion Batteries. Polymers, 2020, 12, 764.	4.5	24
45	Facile fabrication of single-component flame-retardant epoxy resin with rapid curing capacity and satisfied thermal resistance. Reactive and Functional Polymers, 2022, 170, 105103.	4.1	21
46	Facile synthesis of graphene oxide-wrapped CNFs as high-performance microwave absorber. Ceramics International, 2019, 45, 12895-12902.	4.8	18
47	Electromagnetic interference shielding properties of electroless nickel-coated carbon fiber paper reinforced epoxy composites. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 1165-1169.	1.0	17
48	A systematic investigation of dispersion concentration and particle size distribution of multi-wall carbon nanotubes in aqueous solutions of various dispersants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124369.	4.7	17
49	Synthesis of a novel reactive flame retardant containing phosphaphenanthrene and triazine-trione groups and its application in unsaturated polyester resin. Materials Research Express, 2018, 5, 035306.	1.6	16
50	Study on properties of flameâ€retardant cyanate esters modified with DOPO and triazine compounds. Polymers for Advanced Technologies, 2018, 29, 2574-2582.	3.2	15
51	Low content Ag-coated poly(acrylonitrile) microspheres and graphene for enhanced microwave absorption performance epoxy composites. Materials Research Express, 2018, 5, 045040.	1.6	14
52	Design of hierarchical 1D–2D NiCo2O4 as high-performance microwave absorber with strong loss and wide absorbing frequency. Journal of Materials Science: Materials in Electronics, 2019, 30, 16287-16297.	2.2	14
53	Enhanced microwave absorption properties of epoxy composites containing graphite nanosheets@Fe ₃ O ₄ decorated comb-like MnO ₂ nanoparticles. Materials Research Express, 2018, 5, 056305.	1.6	12
54	Preparation of MnO ₂ @CNFs composites and their tunable microwave absorption properties. Materials Research Express, 2019, 6, 075005.	1.6	12

#	Article	IF	CITATIONS
55	Coprecipitation synthesis of hollow poly(acrylonitrile) microspheres@CoFe2O4 with graphene as lightweight microwave absorber. Journal of Materials Science: Materials in Electronics, 2017, 28, 3337-3348.	2.2	11
56	Preparation of flame-retardant cyanate ester with low dielectric constants and dissipation factors modified with novel phosphorus-contained Schiff base. Journal of Thermal Analysis and Calorimetry, 2019, 135, 3153-3164.	3.6	11
57	Facile Synthesis of Cobalt-Doped Porous Composites with Amorphous Carbon/Zn Shell for High-Performance Microwave Absorption. Nanomaterials, 2020, 10, 330.	4.1	11
58	Preparation of flame-retardant cyanate ester resin combined with phosphorus-containing maleimide. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1617-1628.	3.6	10
59	Liquid oxygen compatibility and toughness of epoxy resin modified by a novel hyperbranched polysiloxane. Materials Research Express, 2019, 6, 085338.	1.6	10
60	Enhanced microwave absorption properties of nickel-coated carbon fiber/glass fiber hybrid epoxy composites-towards an industrial reality. Materials Research Express, 2019, 6, 126324.	1.6	9
61	Synergetic effect of thermal conductivity and flame retardancy of cyanate ester composites containing DOPO and BN with great dielectric properties. Polymers for Advanced Technologies, 2020, 31, 126-134.	3.2	5
62	Study on the curing behavior of polythiol/phenolic/epoxy resin and the mechanical and thermal properties of the composites. Materials Research Express, 2021, 8, 055302.	1.6	5
63	Remarkable Temperature Sensitivity of Partially Carbonized Carbon Fibers with Different Microstructures and Compositions. Materials, 2021, 14, 7085.	2.9	5
64	Fabrication of one-component epoxy resin systems using maleic acid modified imidazole derivatives. Materials Research Express, 2019, 6, 105329.	1.6	4
65	Preparation and properties of aniline chainâ€extended thermoplastic epoxy resin using triphenylphosphine as catalyst. Polymers for Advanced Technologies, 0, , .	3.2	3
66	Light-weight carbon fiber/silver-coated hollow glass spheres/epoxy composites as highly effective electromagnetic interference shielding material. Journal of Reinforced Plastics and Composites, 2022, 41, 497-508.	3.1	3
67	Study on tri-imidazole derivatives modified with triazine-trione structure as latent curing agents for epoxy resin. SN Applied Sciences, 2022, 4, 1.	2.9	1