List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6212662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurement and Correlation of the Thermal Conductivity of 1,1,1,2,2,3,3-Heptafluoro-3-methoxypropane (RE-347mcc). International Journal of Thermophysics, 2022, 43, 1.	1.0	6
2	Reference Correlation for the Viscosity of Propane-1,2-diol (Propylene Glycol) from the Triple Point to 452ÂK and up to 245ÂMPa. International Journal of Thermophysics, 2022, 43, 1.	1.0	3
3	New International Formulation for the Thermal Conductivity of Heavy Water. Journal of Physical and Chemical Reference Data, 2022, 51, .	1.9	6
4	Reference Correlation for the Viscosity of 1,1,1,2-Tetrafluoroethane (R-134a) from the Triple Point to 438ÂK and up to 70ÂMPa. International Journal of Thermophysics, 2022, 43, .	1.0	5
5	The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids. Industrial & & & & & & & & & & & & & & & & & & &	1.8	65
6	Reference Correlation for the Viscosity of Difluoromethane (R-32) from the Triple Point to 425ÂK and up to 70ÂMPa. International Journal of Thermophysics, 2022, 43, .	1.0	5
7	Reference Correlation for the Thermal Conductivity of Xenon from the Triple Point to 606ÂK and Pressures up to 400ÂMPa. International Journal of Thermophysics, 2021, 42, 1.	1.0	5
8	Reference Correlation for the Viscosity of Xenon from the Triple Point to 750ÂK and up to 86ÂMPa. International Journal of Thermophysics, 2021, 42, 1.	1.0	6
9	Reference Correlation for the Viscosity of Ethane-1,2-diol (Ethylene Glycol) from the Triple Point to 465ÂK and up to 100ÂMPa. International Journal of Thermophysics, 2021, 42, 1.	1.0	8
10	Reference Correlation for the Thermal Conductivity of Ethane-1,2-diol (Ethylene Glycol) from the Triple Point to 475ÂK and Pressures up to 100ÂMPa. International Journal of Thermophysics, 2021, 42, 1.	1.0	4
11	New International Formulation for the Viscosity of Heavy Water. Journal of Physical and Chemical Reference Data, 2021, 50, .	1.9	11
12	Measurements and Correlations of the Thermal Conductivity of Three Polyol Esters and a Polyol Ester-Based Lubricant. International Journal of Thermophysics, 2020, 41, 1.	1.0	2
13	Measurement and Correlation of the Thermal Conductivity of cis-1,1,1,4,4,4-hexafluoro-2-butene. International Journal of Thermophysics, 2020, 41, 1.	1.0	17
14	(R)Evolution of Refrigerants. Journal of Chemical & Engineering Data, 2020, 65, 4176-4193.	1.0	101
15	Reference Correlations for the Viscosity of 13 Inorganic Molten Salts. Journal of Physical and Chemical Reference Data, 2019, 48, .	1.9	9
16	Reference Correlation for the Viscosity of Cyclopentane from the Triple Point to 460 K and up to 380 MPa. Journal of Physical and Chemical Reference Data, 2019, 48, .	1.9	3
17	Reference Correlation for the Thermal Conductivity of n-Hexadecane from the Triple Point to 700 K and up to 50 MPa. Journal of Physical and Chemical Reference Data, 2018, 47, 013103.	1.9	11
18	Reference Correlations for the Thermal Conductivity of 13 Inorganic Molten Salts. Journal of Physical and Chemical Reference Data, 2018, 47, .	1.9	26

#	Article	IF	CITATIONS
19	Reference Correlation for the Thermal Conductivity of Ammonia from the Triple-Point Temperature to 680 K and Pressures up to 80 MPa. Journal of Physical and Chemical Reference Data, 2018, 47, .	1.9	11
20	Reference Values and Reference Correlations for the Thermal Conductivity and Viscosity of Fluids. Journal of Physical and Chemical Reference Data, 2018, 47, .	1.9	46
21	Measurement and Correlation of the Thermal Conductivity of 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone. Journal of Chemical & Engineering Data, 2018, 63, 2783-2789.	1.0	9
22	Reference Correlation for the Viscosity of Ammonia from the Triple Point to 725 K and up to 50 MPa. Journal of Physical and Chemical Reference Data, 2018, 47, .	1.9	21
23	Reference Correlation of the Thermal Conductivity of Cyclohexane from the Triple Point to 640 K and up to 175 MPa. Journal of Physical and Chemical Reference Data, 2017, 46, .	1.9	14
24	Measurement and Correlation of the Thermal Conductivity of <i>trans</i> -1-Chloro-3,3,3-trifluoropropene (R1233zd(E)). Journal of Chemical & Engineering Data, 2017, 62, 2659-2665.	1.0	43
25	Correlations for the Viscosity and Thermal Conductivity of Ethyl Fluoride (R161). Journal of Physical and Chemical Reference Data, 2017, 46, .	1.9	26
26	Reference Correlations for the Viscosity and Thermal Conductivity of <i>n</i> -Undecane. Journal of Physical and Chemical Reference Data, 2017, 46, .	1.9	22
27	Measurement and Correlation of the Viscosity of 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone. Journal of Chemical & Engineering Data, 2017, 62, 3603-3609.	1.0	12
28	Reference Correlations for the Thermal Conductivity of Liquid Bismuth, Cobalt, Germanium, and Silicon. Journal of Physical and Chemical Reference Data, 2017, 46, .	1.9	17
29	Reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel and tin. High Temperatures - High Pressures, 2017, 46, 391-416.	0.3	2
30	Reference Correlation of the Thermal Conductivity of Carbon Dioxide from the Triple Point to 1100 K and up to 200 MPa. Journal of Physical and Chemical Reference Data, 2016, 45, .	1.9	45
31	Reference Correlations of the Thermal Conductivity of Ethene and Propene. Journal of Physical and Chemical Reference Data, 2016, 45, 033104.	1.9	15
32	Correlations for the viscosity of 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)). International Journal of Refrigeration, 2016, 71, 39-45.	1.8	47
33	Measurements of the Thermal Conductivity of 1,1,1,3,3-Pentafluoropropane (R245fa) and Correlations for the Viscosity and Thermal Conductivity Surfaces. Journal of Chemical & Engineering Data, 2016, 61, 3286-3294.	1.0	26
34	Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties. Energy & Fuels, 2016, 30, 1445-1461.	2.5	137
35	Reference Correlation of the Viscosity of Toluene from the Triple Point to 675 K and up to 500 MPa. Journal of Physical and Chemical Reference Data, 2015, 44,	1.9	39
36	Reference Correlations of the Thermal Conductivity of Cyclopentane, iso-Pentane, and n-Pentane. Journal of Physical and Chemical Reference Data, 2015, 44, 033102.	1.9	17

#	Article	IF	CITATIONS
37	Reference Correlation of the Viscosity of Benzene from the Triple Point to 675 K and up to 300 MPa. Journal of Physical and Chemical Reference Data, 2014, 43, 033103.	1.9	33
38	Reference Correlation of the Viscosity of <i>n</i> -Heptane from the Triple Point to 600 K and up to 248 MPa. Journal of Physical and Chemical Reference Data, 2014, 43, .	1.9	50
39	Reference Correlations of the Thermal Conductivity of <i>o</i> -Xylene, <i>m</i> -Xylene, <i>p</i> -Xylene, and Ethylbenzene from the Triple Point to 700 K and Moderate Pressures. Journal of Physical and Chemical Reference Data, 2014, 43, .	1.9	18
40	Reference Correlation of the Viscosity of <i>n</i> -Hexane from the Triple Point to 600 K and up to 100 MPa. Journal of Physical and Chemical Reference Data, 2013, 42, .	1.9	57
41	Reference Correlation of the Thermal Conductivity of Methanol from the Triple Point to 660 K and up to 245 MPa. Journal of Physical and Chemical Reference Data, 2013, 42, .	1.9	30
42	Simplified Model for the Critical Thermal-Conductivity Enhancement in Molecular Fluids. International Journal of Thermophysics, 2013, 34, 191-212.	1.0	80
43	Reference Correlation of the Thermal Conductivity of <i>n</i> -Heptane from the Triple Point to 600 K and up to 250 MPa. Journal of Physical and Chemical Reference Data, 2013, 42, .	1.9	29
44	Correlation for the Viscosity of Normal Hydrogen Obtained from Symbolic Regression. Journal of Chemical & Engineering Data, 2013, 58, 969-979.	1.0	67
45	Reference Correlation of the Thermal Conductivity of Benzene from the Triple Point to 725 K and up to 500 MPa. Journal of Physical and Chemical Reference Data, 2012, 41, .	1.9	27
46	Reference Correlation of the Thermal Conductivity of Toluene from the Triple Point to 1000 K and up to 1000 MPa. Journal of Physical and Chemical Reference Data, 2012, 41, 023101-023101-12.	1.9	50
47	Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics. Energy & amp; Fuels, 2012, 26, 3284-3303.	2.5	232
48	Measurements and Modeling Study on a High-Aromatic Diesel Fuel. Energy & Fuels, 2012, 26, 1787-1797.	2.5	20
49	New International Formulation for the Thermal Conductivity of H2O. Journal of Physical and Chemical Reference Data, 2012, 41, .	1.9	172
50	Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa. Journal of Physical and Chemical Reference Data, 2012, 41, 023104-023104-9.	1.9	33
51	Comparison of Diesel Fuel Oxygenate Additives to the Composition-Explicit Distillation Curve Method. Part 2: Cyclic Compounds with One to Two Oxygens. Energy & Fuels, 2011, 25, 2508-2517.	2.5	21
52	Comparison of Diesel Fuel Oxygenate Additives to the Composition-Explicit Distillation Curve Method. Part 1: Linear Compounds with One to Three Oxygens. Energy & Fuels, 2011, 25, 2493-2507.	2.5	28
53	Measurement and Correlation of the Thermal Conductivity of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and <i>trans</i> -1,3,3,3-Tetrafluoropropene (R1234ze(E)). Journal of Chemical & Engineering Data, 2011, 56, 4868-4874.	1.0	62
54	Correlation of the Thermal Conductivity of Normal and Parahydrogen from the Triple Point to 1000 K and up to 100 MPa. Journal of Physical and Chemical Reference Data, 2011, 40, .	1.9	57

#	Article	IF	CITATIONS
55	Equations of State on Demand: Application for Surrogate Fuel Development. International Journal of Thermophysics, 2011, 32, 596-613.	1.0	7
56	Surrogate Mixture Models for the Thermophysical Properties of Aviation Fuel Jet-A. Energy & Fuels, 2010, 24, 3565-3571.	2.5	115
57	Ab Initio Transport Coefficients of Gaseous Hydrogen. International Journal of Thermophysics, 2010, 31, 740-755.	1.0	26
58	The composition-explicit distillation curve technique: Relating chemical analysis and physical properties of complex fluids. Journal of Chromatography A, 2010, 1217, 2703-2715.	1.8	59
59	Mixed refrigerants for a glass capillary micro cryogenic cooler. Cryogenics, 2010, 50, 439-442.	0.9	40
60	Evaluation of the Physicochemical Authenticity of Aviation Kerosene Surrogate Mixtures. Part 2: Analysis and Prediction of Thermophysical Properties. Energy & Fuels, 2010, 24, 4277-4284.	2.5	80
61	Viscosity of H2O in the Critical Region. International Journal of Thermophysics, 2009, 30, 374-384.	1.0	15
62	Thermal Diffusivity of H2O Near the Critical Point. International Journal of Thermophysics, 2009, 30, 1453-1465.	1.0	9
63	Preliminary Surrogate Mixture Models for the Thermophysical Properties of Rocket Propellants RP-1 and RP-2. Energy & amp; Fuels, 2009, 23, 3083-3088.	2.5	92
64	New International Formulation for the Viscosity of H2O. Journal of Physical and Chemical Reference Data, 2009, 38, 101-125.	1.9	330
65	Model for the Thermodynamic Properties of a Biodiesel Fuel. Energy & Fuels, 2009, 23, 3790-3797.	2.5	101
66	Composition-explicit Distillation Curves for Mixtures of Diesel Fuel with Dimethyl Carbonate and Diethyl Carbonate. Energy & Fuels, 2009, 23, 3989-3997.	2.5	48
67	Density and Speed of Sound Measurements on Five Fatty Acid Methyl Esters at 83 kPa and Temperatures from (278.15 to 338.15) K. Journal of Chemical & Engineering Data, 2008, 53, 2412-2416.	1.0	51
68	Chemically Authentic Surrogate Mixture Model for the Thermophysical Properties of a Coal-Derived Liquid Fuel. Energy & Fuels, 2008, 22, 3249-3257.	2.5	97
69	Surrogate Mixture Model for the Thermophysical Properties of Synthetic Aviation Fuel S-8: Explicit Application of the Advanced Distillation Curve. Energy & Fuels, 2008, 22, 1104-1114.	2.5	164
70	Measurement and Correlation of the Thermal Conductivity of Methylcyclohexane and Propylcyclohexane from (300 to 600) K at Pressures to 60 MPa. Journal of Chemical & Engineering Data, 2008, 53, 2120-2127.	1.0	17
71	Current Status of Transport Properties of Hydrogen. International Journal of Thermophysics, 2007, 28, 773-795.	1.0	26
72	Correlation for the Vapor Pressure of Mercuryâ€. Industrial & Engineering Chemistry Research, 2006, 45, 7351-7361.	1.8	84

#	Article	IF	CITATIONS
73	Measurement and Correlation of the Thermal Conductivity of Pentafluoroethane (R125) from 190 K to 512 K at Pressures to 70 MPa. Journal of Chemical & Engineering Data, 2006, 51, 898-904.	1.0	23
74	Correlation for the Viscosity of Pentafluoroethane (R125) from the Triple Point to 500 K at Pressures up to 60 MPaâ€. Industrial & Engineering Chemistry Research, 2006, 45, 4447-4453.	1.8	19
75	A New Reference Correlation for the Viscosity of Methanol. Journal of Physical and Chemical Reference Data, 2006, 35, 1597-1620.	1.9	82
76	Thermal conductivity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane. Fluid Phase Equilibria, 2005, 227, 47-55.	1.4	27
77	Generalized SAFT-DFT/DMT Model for the Thermodynamic, Interfacial, and Transport Properties of Associating Fluids:  Application for n-Alkanols. Industrial & Engineering Chemistry Research, 2005, 44, 6916-6927.	1.8	43
78	Thermodynamic Properties ofn-Dodecane. Energy & Fuels, 2004, 18, 960-967.	2.5	134
79	Transport Properties ofn-Dodecane. Energy & Fuels, 2004, 18, 968-975.	2.5	75
80	Viscosity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane. Fluid Phase Equilibria, 2004, 224, 263-270.	1.4	62
81	Model for the Viscosity and Thermal Conductivity of Refrigerants, Including a New Correlation for the Viscosity of R134a. Industrial & amp; Engineering Chemistry Research, 2003, 42, 3163-3178.	1.8	130
82	Thermophysical property standard reference data from NIST. International Journal of Thermophysics, 1994, 15, 1279-1288.	1.0	30
83	A predictive extended corresponding states model for pure and mixed refrigerants including an equation of state for R134a. International Journal of Refrigeration, 1994, 17, 18-31.	1.8	101
84	An equation of state formulation of the thermodynamic properties of R134a (1,1,1,2-tetrafluoroethane). International Journal of Refrigeration, 1992, 15, 393-400.	1.8	31
85	Prediction of the thermal conductivity of refrigerants and refrigerant mixtures. Fluid Phase Equilibria, 1992, 80, 249-261.	1.4	77