Kitae Baek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6212616/publications.pdf Version: 2024-02-01

KITAE RAEL

#	Article	IF	CITATIONS
1	Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. Chemical Engineering Journal, 2018, 351, 418-427.	12.7	174
2	Adsorption characteristics of As(V) on iron-coated zeolite. Journal of Hazardous Materials, 2009, 163, 804-808.	12.4	160
3	Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation. Environmental Pollution, 2014, 186, 29-35.	7.5	158
4	Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment. Journal of Hazardous Materials, 2019, 365, 695-706.	12.4	151
5	A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils. Science of the Total Environment, 2018, 616-617, 572-582.	8.0	146
6	Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere, 2007, 66, 970-976.	8.2	129
7	Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst. Energy Conversion and Management, 2018, 165, 628-633.	9.2	125
8	Immobilization of lead in contaminated firing range soil using biochar. Environmental Science and Pollution Research, 2013, 20, 8464-8471.	5.3	122
9	Removal mechanisms of copper using steel-making slag: adsorption and precipitation. Desalination, 2008, 223, 283-289.	8.2	117
10	Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil. Science of the Total Environment, 2018, 636, 1241-1248.	8.0	111
11	Adsorption of Cr(VI) onto cationic surfactant-modified activated carbon. Journal of Hazardous Materials, 2009, 166, 642-646.	12.4	109
12	Recycling dredged sediment into fill materials, partition blocks, and paving blocks: Technical and economic assessment. Journal of Cleaner Production, 2018, 199, 69-76.	9.3	109
13	Electrokinetic extraction of heavy metals from dredged marine sediment. Separation and Purification Technology, 2011, 79, 164-169.	7.9	108
14	Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. Journal of Hazardous Materials, 2009, 161, 457-462.	12.4	102
15	Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb-contaminated soil. Separation and Purification Technology, 2011, 79, 170-176.	7.9	96
16	Electrokinetic remediation of Zn and Ni-contaminated soil. Journal of Hazardous Materials, 2009, 165, 501-505.	12.4	91
17	Role of reducing agent in extraction of arsenic and heavy metals from soils by use of EDTA. Chemosphere, 2016, 152, 274-283.	8.2	91
18	Enhanced adsorption of arsenic onto alum sludge modified by calcination. Journal of Cleaner Production, 2018, 176, 54-62.	9.3	91

#	Article	IF	CITATIONS
19	Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. Environment International, 2019, 133, 105247.	10.0	91
20	Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions. Journal of Hazardous Materials, 2009, 171, 443-451.	12.4	90
21	Extraction characteristics of heavy metals from marine sediments. Chemical Engineering Journal, 2013, 228, 688-699.	12.7	88
22	Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. Journal of Hazardous Materials, 2010, 184, 872-876.	12.4	83
23	In situ field scale electrokinetic remediation of multi-metals contaminated paddy soil: Influence of electrode configuration. Electrochimica Acta, 2012, 86, 89-95.	5.2	83
24	Electrokinetic remediation of fluorine-contaminated soil: Conditioning of anolyte. Journal of Hazardous Materials, 2009, 161, 565-569.	12.4	78
25	The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning. Chemosphere, 2014, 117, 79-86.	8.2	77
26	A novel type of controlled low strength material derived from alum sludge and green materials. Construction and Building Materials, 2018, 165, 792-800.	7.2	75
27	Selective and irreversible adsorption mechanism of cesium on illite. Applied Geochemistry, 2017, 85, 188-193.	3.0	74
28	Research and field experiences on electrokinetic remediation in South Korea. Separation and Purification Technology, 2011, 79, 116-123.	7.9	71
29	Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc. Journal of Hazardous Materials, 2009, 169, 1168-1172.	12.4	68
30	Removal characteristics of anionic metals by micellar-enhanced ultrafiltration. Journal of Hazardous Materials, 2003, 99, 303-311.	12.4	67
31	Removal characteristics of copper by marine macro-algae-derived chars. Chemical Engineering Journal, 2013, 217, 205-211.	12.7	67
32	Simultaneous removal of organic and inorganic contaminants by micellar enhanced ultrafiltration with mixed surfactant. Desalination, 2005, 184, 395-407.	8.2	66
33	Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes. Water Research, 2012, 46, 1847-1857.	11.3	65
34	Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site. Chemosphere, 2016, 159, 426-432.	8.2	65
35	Humic substance-enhanced ultrafiltration for removal of cobalt. Journal of Hazardous Materials, 2005, 122, 31-36.	12.4	63
36	Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: Arsenic extraction by reducing agents and combination of reducing and chelating agents. Journal of Hazardous Materials, 2015, 283, 454-461.	12.4	63

#	Article	IF	CITATIONS
37	Mechanisms of the Removal of U(VI) from Aqueous Solution Using Biochar: A Combined Spectroscopic and Modeling Approach. Environmental Science & Technology, 2018, 52, 13057-13067.	10.0	63
38	Effect of surfactant on reductive dechlorination of trichloroethylene by zero-valent iron. Desalination, 2008, 223, 299-307.	8.2	62
39	Removal characteristics of reactive black 5 using surfactant-modified activated carbon. Desalination, 2008, 223, 290-298.	8.2	62
40	Combined application of EDDS and EDTA for removal of potentially toxic elements under multiple soil washing schemes. Chemosphere, 2018, 205, 178-187.	8.2	62
41	Selective adsorption and irreversible fixation behavior of cesium onto 2:1 layered clay mineral: A mini review. Journal of Hazardous Materials, 2019, 369, 569-576.	12.4	62
42	Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities: A review. Chemical Engineering Journal, 2021, 410, 128381.	12.7	62
43	Chelant-enhanced washing of CCA-contaminated soil: Coupled with selective dissolution or soil stabilization. Science of the Total Environment, 2018, 612, 1463-1472.	8.0	60
44	Selective Recovery of Dissolved Metals from Mine Drainage Using Electrochemical Reactions. Electrochimica Acta, 2015, 181, 248-254.	5.2	58
45	Pulsed electrokinetic removal of Cd and Zn from fine-grained soil. Journal of Applied Electrochemistry, 2010, 40, 1039-1047.	2.9	57
46	Application of solar-cells in the electrokinetic remediation of As-contaminated soil. Electrochimica Acta, 2015, 181, 160-166.	5.2	57
47	Cross-flow micellar-enhanced ultrafiltration for removal of nitrate and chromate: competitive binding. Journal of Hazardous Materials, 2004, 108, 119-123.	12.4	56
48	Field application of electrokinetic remediation for multi-metal contaminated paddy soil using two-dimensional electrode configuration. Environmental Science and Pollution Research, 2014, 21, 4482-4491.	5.3	54
49	Comparison of separation methods of heavy metal from surfactant micellar solutions for the recovery of surfactant. Desalination, 2006, 191, 186-192.	8.2	53
50	Oxalate-based remediation of arsenic bound to amorphous Fe and Al hydrous oxides in soil. Geoderma, 2016, 270, 76-82.	5.1	53
51	Micellar-enhanced ultrafiltration for simultaneous removal of ferricyanide and nitrate. Desalination, 2003, 158, 157-166.	8.2	52
52	Hexagonal two dimensional electrokinetic systems for restoration of saline agricultural lands: A pilot study. Chemical Engineering Journal, 2012, 198-199, 110-121.	12.7	52
53	Removal of Cu2+ by biochars derived from green macroalgae. Environmental Science and Pollution Research, 2016, 23, 985-994.	5.3	52
54	Mobility of arsenic in soil amended with biochar derived from biomass with different lignin contents: Relationships between lignin content and dissolved organic matter leaching. Chemical Engineering Journal, 2020, 393, 124687.	12.7	49

#	Article	IF	CITATIONS
55	Interaction of biochar stability and abiotic aging: Influences of pyrolysis reaction medium and temperature. Chemical Engineering Journal, 2021, 411, 128441.	12.7	49
56	Restoration of Saline Soil in Cultivated Land Using Electrokinetic Process. Separation Science and Technology, 2009, 44, 2371-2384.	2.5	48
57	Adsorption of As(III) and As(V) in groundwater by Fe–Mn binary oxide-impregnated granular activated carbon (IMIGAC). Journal of the Taiwan Institute of Chemical Engineers, 2017, 72, 62-69.	5.3	48
58	EK-Fenton process for removal of phenanthrene in a two-dimensional soil system. Engineering Geology, 2005, 77, 217-224.	6.3	47
59	In situ electrokinetic remediation of As-, Cu-, and Pb-contaminated paddy soil using hexagonal electrode configuration: a full scale study. Environmental Science and Pollution Research, 2015, 22, 711-720.	5.3	47
60	Simultaneous removal of chlorinated aromatic hydrocarbons, nitrate, and chromate using micellar-enhanced ultrafiltration. Chemosphere, 2004, 57, 1091-1097.	8.2	46
61	Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag. Environmental Science and Pollution Research, 2015, 22, 11162-11169.	5.3	46
62	Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals. Journal of Environmental Management, 2017, 186, 314-319.	7.8	46
63	Role of clay minerals on reduction of Cr(VI). Geoderma, 2018, 312, 1-5.	5.1	45
64	Enhanced adsorption of arsenic using calcined alginate bead containing alum sludge from water treatment facilities. Journal of Environmental Management, 2019, 234, 181-188.	7.8	45
65	Application of micellar enhanced ultrafiltration for nutrients removal. Desalination, 2003, 156, 137-144.	8.2	44
66	Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon. Journal of Hazardous Materials, 2009, 161, 1565-1568.	12.4	44
67	Electrokinetic restoration of saline agricultural lands. Journal of Applied Electrochemistry, 2010, 40, 1085-1093.	2.9	44
68	Pulsed Electrokinetic Decontamination of Agricultural Lands around Abandoned Mines Contaminated with Heavy Metals. Separation Science and Technology, 2009, 44, 2421-2436.	2.5	43
69	Enhanced reductive extraction of arsenic from contaminated soils by a combination of dithionite and oxalate. Journal of Hazardous Materials, 2015, 284, 19-26.	12.4	43
70	Selective recovery of ferrous oxalate and removal of arsenic and other metals from soil-washing wastewater using a reduction reaction. Journal of Cleaner Production, 2019, 221, 635-643.	9.3	43
71	Electrochemical removal of selenate from aqueous solutions. Chemical Engineering Journal, 2013, 215-216, 678-684.	12.7	42
72	Competitive bind of anionic metals with cetylpyridinium chloride micelle in micellar-enhanced ultrafiltration. Desalination, 2004, 167, 101-110.	8.2	41

#	Article	IF	CITATIONS
73	Removal of arsenate, chromate and ferricyanide by cationic surfactant modified powdered activated carbon. Desalination, 2008, 223, 221-228.	8.2	41
74	Pulse-enhanced electrokinetic restoration of sulfate-containing saline greenhouse soil. Electrochimica Acta, 2012, 86, 57-62.	5.2	41
75	Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH. Environmental Science and Pollution Research, 2015, 22, 3013-3022.	5.3	41
76	Adsorption and photocatalytic activity of biochar with graphitic carbon nitride (g-C 3 N 4). Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 244-249.	5.3	40
77	Photocatalytic co-oxidation of As(III) and Orange G using urea-derived g-C3N4 and persulfate. Chemosphere, 2018, 212, 193-199.	8.2	40
78	Electrokinetic Removal of Petroleum Hydrocarbon from Residual Clayey Soil Following a Washing Process. Clean - Soil, Air, Water, 2010, 38, 189-193.	1.1	39
79	Electrokinetic removal of chloride and sodium from tidelands. Journal of Applied Electrochemistry, 2010, 40, 1139-1144.	2.9	38
80	Competitive extraction of multi-component contaminants in water by Carboxen–polydimethylsiloxane fiber during solid-phase microextraction. Journal of Chromatography A, 2003, 988, 177-184.	3.7	37
81	Consecutive reduction of Cr(VI) by Fe(II) formed through photo-reaction of iron-dissolved organic matter originated from biochar. Environmental Pollution, 2019, 253, 231-238.	7.5	37
82	Simultaneous oxidation and adsorption of arsenic by one-step fabrication of alum sludge and graphitic carbon nitride (g-C3N4). Journal of Hazardous Materials, 2020, 383, 121138.	12.4	37
83	Crossflow ultrafiltration of surfactant solutions. Desalination, 2005, 184, 385-394.	8.2	36
84	A generalized model for transport of contaminants in soil by electric fields. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 308-318.	1.7	36
85	Selection criteria for oxidation method in total organic carbon measurement. Chemosphere, 2018, 199, 453-458.	8.2	36
86	Thermolysis of crude oil sludge using CO2 as reactive gas medium. Energy Conversion and Management, 2019, 186, 393-400.	9.2	36
87	Ex situ pilot scale electrokinetic restoration of saline soil using pulsed current. Separation and Purification Technology, 2013, 120, 282-288.	7.9	35
88	A combination of reducing and chelating agents for electrolyte conditioning in electrokinetic remediation of As-contaminated soil. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 252-259.	5.3	35
89	Compositional modification of products from Co-Pyrolysis of chicken manure and biomass by shifting carbon distribution from pyrolytic oil to syngas using CO2. Energy, 2018, 153, 530-538.	8.8	34
90	Photo-induced redox coupling of dissolved organic matter and iron in biochars and soil system: Enhanced mobility of arsenic. Science of the Total Environment, 2019, 689, 1037-1043.	8.0	34

Κίταε Βάεκ

#	Article	IF	CITATIONS
91	Adsorption of As(III), As(V), Cd(II), Cu(II), and Pb(II) from Aqueous Solutions by Natural Muscovite. Separation Science and Technology, 2010, 45, 814-823.	2.5	33
92	Adsorption characteristics of arsenic and phosphate onto iron impregnated biochar derived from anaerobic granular sludge. Korean Journal of Chemical Engineering, 2018, 35, 1409-1413.	2.7	32
93	Enhanced-oxidation of sulfanilamide in groundwater using combination of calcium peroxide and pyrite. Journal of Hazardous Materials, 2021, 419, 126514.	12.4	32
94	Bioremediation strategies with biochar for polychlorinated biphenyls (PCBs)-contaminated soils: A review. Environmental Research, 2021, 200, 111757.	7.5	31
95	Adsorption characteristics of cesium on the clay minerals: Structural change under wetting and drying condition. Geoderma, 2019, 340, 49-54.	5.1	30
96	Study on electrocoagulation parameters (current density, pH, and electrode distance) for removal of fluoride from groundwater. Environmental Earth Sciences, 2016, 75, 1.	2.7	29
97	Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil. Environmental Science and Pollution Research, 2017, 24, 9820-9825.	5.3	29
98	Interactions of food waste compost with metals and metal-chelant complexes during soil remediation. Journal of Cleaner Production, 2018, 192, 199-206.	9.3	29
99	Transforming waterworks sludge into controlled low-strength material: Bench-scale optimization and field test validation. Journal of Environmental Management, 2019, 232, 254-263.	7.8	29
100	Removal of As(III) and As(V) using iron-rich sludge produced from coal mine drainage treatment plant. Environmental Science and Pollution Research, 2014, 21, 10878-10889.	5.3	28
101	Semi-continuous operation and fouling characteristics of submerged membrane photobioreactor (SMPBR) for tertiary treatment of livestock wastewater. Journal of Cleaner Production, 2018, 180, 244-251.	9.3	28
102	Biochar application strategies for polycyclic aromatic hydrocarbons removal from soils. Environmental Research, 2022, 213, 113599.	7.5	28
103	Field Application of In Situ Electrokinetic Remediation for As-, Cu-, and Pb-Contaminated Paddy Soil. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	27
104	Role of carbon fiber electrodes and carbonate electrolytes in electrochemical phenol oxidation. Journal of Hazardous Materials, 2020, 400, 123083.	12.4	27
105	Removal characteristics of metal cations and their mixtures using micellar-enhanced ultrafiltration. Korean Journal of Chemical Engineering, 2008, 25, 253-258.	2.7	26
106	Selective recovery of Cu, Zn, and Ni from acid mine drainage. Environmental Geochemistry and Health, 2013, 35, 735-743.	3.4	26
107	Extraction mechanism of lead from shooting range soil by ferric salts. Chemical Engineering Research and Design, 2016, 103, 174-182.	5.6	26
108	Adsorption characteristics of cesium onto calcium-silicate-hydrate in concrete powder and block. Chemosphere, 2020, 259, 127494.	8.2	26

#	Article	IF	CITATIONS
109	Removal of Metal Ions From Aqueous Solutions Using Sawdust Modified with Citric Acid or Tartaric Acid. Separation Science and Technology, 2010, 45, 1963-1974.	2.5	25
110	Pilot-scale ex situ electrokinetic restoration of saline greenhouse soil. Journal of Soils and Sediments, 2011, 11, 947-958.	3.0	25
111	Environmental assessment on a soil washing process of a Pb-contaminated shooting range site: a case study. Environmental Science and Pollution Research, 2013, 20, 8417-8424.	5.3	25
112	Removal of 1,2-dichloroethane in groundwater using Fenton oxidation. Journal of Hazardous Materials, 2022, 428, 128253.	12.4	25
113	Cationic starch-enhanced ultrafiltration for Cr(VI) removal. Desalination, 2007, 206, 245-250.	8.2	24
114	Simultaneous application of oxalic acid and dithionite for enhanced extraction of arsenic bound to amorphous and crystalline iron oxides. Journal of Hazardous Materials, 2018, 354, 91-98.	12.4	24
115	The effect of repetitive transcranial magnetic stimulation on fear extinction in rats. Neuroscience, 2012, 200, 159-165.	2.3	23
116	The use of organic waste-derived volatile fatty acids as raw materials of C4-C5 bioalcohols. Journal of Cleaner Production, 2018, 201, 14-21.	9.3	23
117	Efficacy and limitations of low-cost adsorbents for in-situ stabilisation of contaminated marine sediment. Journal of Cleaner Production, 2019, 212, 420-427.	9.3	23
118	Compositional modification of pyrogenic products using CaCO ₃ and CO ₂ from the thermolysis of polyvinyl chloride (PVC). Green Chemistry, 2018, 20, 1583-1593.	9.0	22
119	Pelletized adsorbent of alum sludge and bentonite for removal of arsenic. Environmental Pollution, 2021, 277, 116747.	7.5	22
120	Micellar-enhanced ultrafiltration of chromate and nitrate: binding competition between chromate and nitrate. Desalination, 2004, 167, 111-118.	8.2	21
121	Effect of valences on removal of anionic pollutants using micellar-enhanced ultrafiltration. Desalination, 2004, 167, 119-125.	8.2	21
122	Adsorption characteristics of metal ions by CO2-fixing Chlorella sp. HA-1. Journal of Industrial and Engineering Chemistry, 2009, 15, 354-358.	5.8	21
123	Enhanced-electrokinetic extraction of heavy metals from dredged harbor sediment. Environmental Science and Pollution Research, 2015, 22, 9912-9921.	5.3	21
124	Effects of lead mineralogy on soil washing enhanced by ferric salts as extracting and oxidizing agents. Chemosphere, 2017, 185, 501-508.	8.2	21
125	Removal Characteristics of Cd(II), Cu(II), Pb(II), and Zn(II) by Natural Mongolian Zeolite through Batch and Column Experiments. Separation Science and Technology, 2011, 46, 1313-1320.	2.5	20
126	Occurrence of perchlorate in rice from different areas in the Republic of Korea. Environmental Science and Pollution Research, 2014, 21, 1251-1257.	5.3	20

#	Article	IF	CITATIONS
127	Environmental assessment on electrokinetic remediation of multimetal-contaminated site: a case study. Environmental Science and Pollution Research, 2014, 21, 6751-6758.	5.3	20
128	Synergistic effects of the combination of oxalate and ascorbate on arsenic extraction from contaminated soils. Chemosphere, 2017, 168, 1439-1446.	8.2	20
129	Bifunctional iron-modified graphitic carbon nitride (g-C3N4) for simultaneous oxidation and adsorption of arsenic. Environmental Research, 2020, 188, 109832.	7.5	20
130	Functional use of CO2 to mitigate the formation of bisphenol A in catalytic pyrolysis of polycarbonate. Journal of Hazardous Materials, 2022, 423, 126992.	12.4	20
131	Effects of natural organic matter on the coprecipitation of arsenic with iron. Environmental Geochemistry and Health, 2015, 37, 1029-1039.	3.4	19
132	Sustainability likelihood of remediation options for metal-contaminated soil/sediment. Chemosphere, 2017, 174, 421-427.	8.2	19
133	Electrokinetic Separation of Heavy Metals from Wastewater Treatment Sludge. Separation Science and Technology, 2010, 45, 1982-1987.	2.5	18
134	Assessment of soil washing for simultaneous removal of heavy metals and low-level petroleum hydrocarbons using various washing solutions. Environmental Earth Sciences, 2016, 75, 1.	2.7	18
135	Humic-Substance-Enhanced Ultrafiltration for Removal of Heavy Metals. Separation Science and Technology, 2005, 40, 699-708.	2.5	17
136	Electrokinetic Restoration of Sulfateâ€Accumulated Saline Greenhouse Soil. Clean - Soil, Air, Water, 2011, 39, 1036-1040.	1.1	17
137	Application of iron-coated zeolites (ICZ) for mine drainage treatment. Korean Journal of Chemical Engineering, 2012, 29, 1171-1177.	2.7	17
138	Sorption and desorption characteristics of cobalt in clay: Effect of humic acids. Korean Journal of Chemical Engineering, 2004, 21, 989-993.	2.7	16
139	Adsorption of chlorinated solvents in nonionic surfactant solutions with activated carbon in a fixed bed. Journal of Industrial and Engineering Chemistry, 2009, 15, 777-779.	5.8	16
140	Iron Anode-Mediated Activation of Persulfate. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	16
141	The enhanced thermolysis of heavy oil contaminated soil using CO2 for soil remediation and energy recovery. Journal of CO2 Utilization, 2018, 28, 367-373.	6.8	16
142	Removal of ammonium, phosphate, and sulfonamide antibiotics using alum sludge and low-grade charcoal pellets. Chemosphere, 2021, 281, 130960.	8.2	15
143	Simultaneous removal of nitrate and phosphate using cross-flow micellar-enhanced ultrafiltration (MEUF). Water Science and Technology, 2004, 50, 227-234.	2.5	14
144	Synergistic and inhibitory reduction of Cr(VI) by montmorillonite, citric acid, and Mn(II). Journal of Soils and Sediments, 2018, 18, 205-210.	3.0	13

#	Article	IF	CITATIONS
145	In-situ generation of reactive oxygen species using combination of electrochemical oxidation and metal sulfide. Science of the Total Environment, 2021, 789, 147961.	8.0	13
146	Phenanthrene and 2,2′,5,5′-PCB sorption by several soils from methanol–water solutions: The effect of weathering and solute structure. Chemosphere, 2010, 78, 423-429.	8.2	12
147	Controlled release of iron for activation of persulfate to oxidize orange G using iron anode. Korean Journal of Chemical Engineering, 2017, 34, 1305-1309.	2.7	12
148	Mitigating translocation of arsenic from rice field to soil pore solution by manipulating the redox conditions. Science of the Total Environment, 2021, 762, 143124.	8.0	12
149	Competitive immobilization of multiple component chlorinated solvents by cyclodextrin derivatives. Journal of Hazardous Materials, 2006, 137, 1866-1869.	12.4	11
150	Alkaline Enhanced-Separation of Waste Lubricant Oils from Railway Contaminated Soil. Separation Science and Technology, 2010, 45, 1988-1993.	2.5	11
151	Electrokinetic Removal of As from Soil Washing Residue. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	11
152	Pellet adsorbent derived from molasses and dewatered alum sludge for arsenic removal. Journal of CO2 Utilization, 2019, 33, 31-36.	6.8	11
153	Iron anode mediated transformation of selenate in sand columns. Water Research, 2013, 47, 6538-6545.	11.3	10
154	Enhanced Electrokinetic Transport of Sulfate in Saline Soil. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	10
155	Enhanced irreversible fixation of cesium by wetting and drying cycles in soil. Environmental Geochemistry and Health, 2019, 41, 149-157.	3.4	10
156	Hybrid process of combined soil washing and selective adsorption to treat Cs-contaminated soil. Chemical Engineering Journal, 2021, 423, 129921.	12.7	10
157	Control of arsenic release from paddy soils using alginate encapsulated calcium peroxide. Journal of Hazardous Materials, 2022, 432, 128751.	12.4	10
158	Electrode Configuration for Electrokinetic Restoration of Greenhouse Saline Soil. Separation Science and Technology, 2012, 47, 1677-1681.	2.5	9
159	Desorption technologies for remediation of cesium-contaminated soils: a short review. Environmental Geochemistry and Health, 2021, 43, 3263-3272.	3.4	9
160	Statistical modeling of electrochemical removal of sodium in fermented food composts. Korean Journal of Chemical Engineering, 2002, 19, 627-631.	2.7	8
161	Step-Wise Extraction of Metals from Dredged Marine Sediments. Separation Science and Technology, 2015, 50, 536-544.	2.5	8
162	Extractive and oxidative removal of copper bound to humic acid in soil. Environmental Science and Pollution Research, 2015, 22, 6077-6085.	5.3	8

#	Article	IF	CITATIONS
163	Ferric-enhanced chemical remediation of dredged marine sediment contaminated by metals and petroleum hydrocarbons. Environmental Pollution, 2018, 243, 87-93.	7.5	8
164	Microbial desulfurization of solubilized coal. Biotechnology Letters, 2002, 24, 401-405.	2.2	7
165	Silicone emulsion-enhanced recovery of chlorinated solvents: Batch and column studies. Journal of Hazardous Materials, 2006, 136, 610-617.	12.4	7
166	Removal of As(V) from aqueous system using steel-making by-product. Desalination and Water Treatment, 2009, 7, 152-159.	1.0	7
167	Reduction of nitrate using biochar synthesized by Co-Pyrolyzing sawdust and iron oxide. Environmental Pollution, 2021, 290, 118028.	7.5	7
168	Simultaneous productions of biodiesel and biochar from krill. Journal of Cleaner Production, 2022, 335, 130296.	9.3	7
169	Influence of mixed-surfactant on reductive dechlorination of trichloroethylene by zero-valent iron. Korean Journal of Chemical Engineering, 2011, 28, 1047-1053.	2.7	6
170	In situ field application of electrokinetic remediation for an As-, Cu-, and Pb-contaminated rice paddy site using parallel electrode configuration. Environmental Science and Pollution Research, 2015, 22, 15763-15771.	5.3	6
171	Continuous electrochemical removal of salts from Korean food wastes. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64, 142-145.	5.3	6
172	A new approach for remediation of As-contaminated soil: ball mill-based technique. Environmental Science and Pollution Research, 2016, 23, 3963-3970.	5.3	6
173	Dual radicals-enhanced wet chemical oxidation of non-biodegradable chemicals. Journal of Hazardous Materials, 2021, 401, 123746.	12.4	6
174	Fluoride-contaminated water remediation using biochar derived from dairy processing sludge. Chemical Engineering Journal, 2022, 446, 136955.	12.7	6
175	Electrochemical removal of sodium ion from fermented food composts. Korean Journal of Chemical Engineering, 2000, 17, 245-247.	2.7	5
176	The Solubilization Characteristics of DNAPLs by Oil-Based Emulsion. Separation Science and Technology, 2005, 40, 685-698.	2.5	5
177	Stepwise Sequential Extraction of Asâ€, Cuâ€, and Pbâ€Contaminated Paddy Soil. Clean - Soil, Air, Water, 2014, 42, 1785-1789.	1.1	5
178	Influence of Physicochemical Properties on Cesium Adsorption onto Soil. Journal of Soil and Groundwater Environment, 2017, 22, 27-32.	0.1	5
179	CaO2-based electro-Fenton-oxidation of 1,2-dichloroethane in groundwater. Science of the Total Environment, 2022, 843, 157065.	8.0	5
180	Headspace solid-phase microextraction for determination of micellar solubilization of methyltert-butyl ether (MTBE). Korean Journal of Chemical Engineering, 2003, 20, 698-701.	2.7	4

#	Article	IF	CITATIONS
181	Immobilization behavior of methyl tert-butyl ether by cyclodextrins. Journal of Hazardous Materials, 2003, 105, 169-177.	12.4	4
182	Removal of Ferriccyanide using Micellar Enhanced Ultrafiltration (MEUF). Asia-Pacific Journal of Chemical Engineering, 2005, 13, 137-146.	0.0	4
183	Preface—Biochar and agricultural sustainability. Journal of Soils and Sediments, 2020, 20, 3015-3016.	3.0	4
184	Soil Washing and Effluent Treatment for Contaminated Soil with Toxic Metals. Korean Chemical Engineering Research, 2013, 51, 745-754.	0.2	4
185	Centrifugal Polyelectrolyte Enhanced Ultrafiltration for Removal of Copper itrate Complexes from Aqueous Solutions. Separation Science and Technology, 2006, 41, 1583-1592.	2.5	3
186	Evaluation on bioaccessibility of arsenic in the arsenic-contaminated soil. Korean Journal of Chemical Engineering, 2019, 36, 1780-1784.	2.7	3
187	IRON ELECTROCOAGULATION WITH ENHANCED CATHODIC REDUCTION FOR THE REMOVAL OF AQUEOUS CONTAMINANT MIXTURES. Environmental Engineering and Management Journal, 2015, 14, 2905-2911.	0.6	3
188	Feasibility Study on Stabilization Technique of Cr(VI)-contaminated Site. Journal of Soil and Groundwater Environment, 2017, 22, 27-32.	0.1	3
189	Simultaneous oxidation and analysis of TOC-TN-TP in one pot reactor. Chemosphere, 2022, 292, 133336.	8.2	3
190	Mass Transfer of Polyaromatic Hydrocarbons (PAHs) in a Two-Liquid-Phase System. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 509-519.	1.7	2
191	Electrokinetic Removal of Nitrate and Fluoride. , 0, , 141-148.		2
192	One-dimensional column and three-dimensional box flushing of silicone emulsion-enhanced remediation for chlorinated solvent contaminated soils. Korean Journal of Chemical Engineering, 2017, 34, 741-746.	2.7	2
193	Transport of TiO2 and CeO2 nanoparticles in saturated porous media in the presence of surfactants with environmentally relevant concentrations. Environmental Science and Pollution Research, 2021, , 1.	5.3	2
194	Treatment of Selective Sequential Precipitation for Recovering Fe and Al From Mine Water an Abandoned Coal Mine. Journal of the Korean Society of Mineral and Energy Resources Engineers, 2017, 54, 215-222.	0.4	2
195	Evaluation of Electrolyte and Electrode Spacing for Application of Electrokinetic Remediation. Journal of Soil and Groundwater Environment, 2013, 18, 6-15.	0.1	2
196	Extraction of Total Petroleum Hydracabons from Petroleum Oil-Contaminated Sandy Soil by Soil Washing. Journal of Soil and Groundwater Environment, 2013, 18, 18-24.	0.1	2
197	Electrokinetic Extraction of Metals from Marine Sediment. Korean Chemical Engineering Research, 2013, 51, 733-738.	0.2	2
198	Characterization of Natural Zeolite and Study of Adsorption Properties of Heavy Metal lons for Development of Zeolite Mine. Journal of the Mineralogical Society of Korea, 2015, 28, 299-308.	0.2	2

#	Article	IF	CITATIONS
199	Simultaneous removal of nitrate and phosphate using cross-flow micellar-enhanced ultrafiltration (MEUF). Water Science and Technology, 2004, 50, 227-34.	2.5	2
200	Green Remediation of Soil and Groundwater by Electrochemical Methods. , 2012, , .		1
201	Environmental Impact of Soil Washing Process Based on the CO2Emissions and Energy Consumption. Korean Chemical Engineering Research, 2014, 52, 119-125.	0.2	1
202	Recovery of Petroleum Hydrocarbons from Oily Sludge Landfilled Soil. Journal of Soil and Groundwater Environment, 2015, 20, 41-46.	0.1	1
203	Study on removal of Se(IV) using Fe-Mn layered double hydroxides and Fe-Mn Dos (double oxides). Mongolian Journal of Chemistry, 2019, 20, 29-37.	0.3	1
204	One-step Oxidation of Total Organic Carbon, Total Nitrogen, and Total Phosphorous using Wet Chemical Oxidation. Daehan Hwan'gyeong Gonghag Hoeji, 2020, 42, 603-609.	1.1	1
205	IRON ELECTROCOAGULATION WITH ENHANCED CATHODIC REDUCTION FOR THE REMOVAL OF AQUEOUS CONTAMINANT MIXTURES. Environmental Engineering and Management Journal, 2015, 14, 2905-2911.	0.6	1
206	Special issue on contamination, remediation and health for pollutants in natural aquatic, soil, sediments and atmospheric environments. Environmental Geochemistry and Health, 2021, 43, 3261-3262.	3.4	0
207	Preface — Recent advances in cleanup of contaminated sites. Journal of Soils and Sediments, 2021, 21, 2731-2731.	3.0	0
208	Mechanism on Extraction of Heavy Metals from Soil by Ultrasonication. Journal of Soil and Groundwater Environment, 2015, 20, 28-35.	0.1	0