
Michael A Grusak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6212476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IMPROVING THE NUTRIENT COMPOSITION OF PLANTS TO ENHANCE HUMAN NUTRITION AND HEALTH. Annual Review of Plant Biology, 1999, 50, 133-161.	14.3	416
2	Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E. Frontiers in Physiology, 2012, 3, 317.	2.8	243
3	Enhancing Mineral Content in Plant Food Products. Journal of the American College of Nutrition, 2002, 21, 178S-183S.	1.8	145
4	Wholeâ€plant mineral partitioning throughout the life cycle in <i>Arabidopsis thaliana </i> ecotypes Columbia, Landsberg <i>erecta</i> , Cape Verde Islands, and the mutant line <i>ysl1ysl3</i> . New Phytologist, 2008, 177, 389-405.	7.3	142
5	A <i>Phaseolus vulgaris</i> Diversity Panel for Andean Bean Improvement. Crop Science, 2015, 55, 2149-2160.	1.8	133
6	Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. Journal of Food Composition and Analysis, 2017, 58, 33-39.	3.9	117
7	Quantitative trait locus mapping for seed mineral concentrations in two <i>Arabidopsis thaliana</i> recombinant inbred populations. New Phytologist, 2008, 179, 1033-1047.	7.3	109
8	Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nature Biotechnology, 2019, 37, 144-151.	17.5	89
9	Chickpea leaves as a vegetable green for humans: evaluation of mineral composition. Journal of the Science of Food and Agriculture, 2003, 83, 945-950.	3.5	70
10	Effects of nano-ZnO on the agronomically relevant Rhizobium –legume symbiosis. Science of the Total Environment, 2014, 497-498, 78-90.	8.0	67
11	Iron transport and storage within the seed coat and embryo of developing seeds of pea (<i>Pisum) Tj ETQq1 1 0.</i>	784314 rg 1.7	gBT_/Overloct
12	Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 991-1002.	2.3	63
13	Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems. Plant Science, 2015, 240, 170-181.	3.6	55
14	Leaf Protein and Mineral Concentrations across the "Miracle Tree―Genus Moringa. PLoS ONE, 2016, 11, e0159782.	2.5	54
15	Use of a "Super-child―Approach to Assess the Vitamin A Equivalence of Moringa oleifera Leaves, Develop a Compartmental Model for Vitamin A Kinetics, and Estimate Vitamin A Total Body Stores in Young Mexican Children. Journal of Nutrition, 2017, 147, 2356-2363.	2.9	49
16	Morpho-physiological parameters affecting iron deficiency chlorosis in soybean (Glycine max L.). Plant and Soil, 2014, 374, 161-172.	3.7	48
17	Evaluation of Minerals, Phytochemical Compounds and Antioxidant Activity of Mexican, Central American, and African Green Leafy Vegetables. Plant Foods for Human Nutrition, 2015, 70, 357-364.	3.2	44
18	Association mapping of agronomic and quality traits in USDA pea single-plant collection. Molecular Breeding, 2015, 35, 1.	2.1	43

MICHAEL A GRUSAK

#	Article	IF	CITATIONS
19	Mineral Concentration of Broccoli Florets in Relation to Year of Cultivar Release. Crop Science, 2011, 51, 2721-2727.	1.8	40
20	Demonstrating a Nutritional Advantage to the Fast-Cooking Dry Bean (<i>Phaseolus vulgaris</i> L.). Journal of Agricultural and Food Chemistry, 2016, 64, 8592-8603.	5.2	40
21	α-Tocopherol disappearance rates from plasma depend on lipid concentrations: studies using deuterium-labeled collard greens in younger and older adults. American Journal of Clinical Nutrition, 2015, 101, 752-759.	4.7	38
22	Carbohydrate Digestion in Humans from a Î ² -Glucan-Enriched Barley Is Reduced. Journal of Nutrition, 2002, 132, 2593-2596.	2.9	37
23	Phytochemicals in plants: genomics-assisted plant improvement for nutritional and health benefits. Current Opinion in Biotechnology, 2002, 13, 508-511.	6.6	37
24	Characterization of the PT Clade of Oligopeptide Transporters in Rice. Plant Genome, 2008, 1, .	2.8	33
25	Uniformly15N-labeled soybean seeds produced for use in human and animal nutrition studies: Description of a recirculating hydroponic growth system and whole plant nutrient and environmental requirements. Journal of the Science of Food and Agriculture, 1994, 64, 223-230.	3.5	24
26	The Scientific Grand Challenges of the 21st Century for the Crop Science Society of America. Crop Science, 2012, 52, 1003-1010.	1.8	21
27	Nutritional composition and cooking characteristics of tepary bean (Phaseolus acutifolius Gray) in comparison with common bean (Phaseolus vulgaris L.). Genetic Resources and Crop Evolution, 2017, 64, 935-953.	1.6	21
28	Functional analysis of transgenic rice (<i>Oryza sativa</i> L.) transformed with an <i>Arabidopsis thaliana</i> ferric reductase (<i>AtFR02</i>). Soil Science and Plant Nutrition, 2004, 50, 1151-1157.	1.9	20
29	Arabidopsis Glutaredoxin S17 Contributes to Vegetative Growth, Mineral Accumulation, and Redox Balance during Iron Deficiency. Frontiers in Plant Science, 2017, 8, 1045.	3.6	20
30	Towards predicting biochar impacts on plant-available soil nitrogen content. Biochar, 2022, 4, 1.	12.6	20
31	Fatty Acid, Flavonol, and Mineral Composition Variability among Seven Macrotyloma uniflorum (Lam.) Verdc. Accessions. Agriculture (Switzerland), 2013, 3, 157-169.	3.1	18
32	Concentrations of minerals and phenolic compounds in three edible sprout species treated with iron-chelates during imbibition. Horticulture Environment and Biotechnology, 2014, 55, 471-478.	2.1	18
33	Golden Rice gets a boost from maize. Nature Biotechnology, 2005, 23, 429-430.	17.5	17
34	Stacking disease resistance and mineral biofortification in cassava varieties to enhance yields and consumer health. Plant Biotechnology Journal, 2021, 19, 844-854.	8.3	17
35	Influence of alternative soil amendments on mycorrhizal fungi and cowpea production. Heliyon, 2018, 4, e00704.	3.2	16
36	Intrinsic42Ca-Labelling of Green Bean Pods for Use in Human Bioavailability Studies. Journal of the Science of Food and Agriculture, 1996, 70, 11-15.	3.5	15

MICHAEL A GRUSAK

#	Article	IF	CITATIONS
37	Effects of Fe deficiency on the protein profile of <i>Brassica napus</i> phloem sap. Proteomics, 2015, 15, 3835-3853.	2.2	15
38	Quantitative trait locus analysis of root ferric reductase activity and leaf chlorosis in the model legume, Lotus japonicus. Plant and Soil, 2012, 351, 363-376.	3.7	14
39	Metal physiology and accumulation in a Medicago truncatula mutant exhibiting an elevated requirement for zinc. New Phytologist, 2003, 158, 207-218.	7.3	13
40	Effects of Fe deficiency on the protein profiles and lignin composition of stem tissues from Medicago truncatula in absence or presence of calcium carbonate. Journal of Proteomics, 2016, 140, 1-12.	2.4	12
41	Effect of Gypsum Application on Mineral Composition in Peanut Pod Walls and Seeds. Crop Science, 2013, 53, 1658-1667.	1.8	10
42	Evaluation of biogeographical factors in the native range to improve the success of biological control agents in the introduced range. Biocontrol Science and Technology, 2013, 23, 1213-1230.	1.3	9
43	Plasma Response to Deuterium-Labeled Vitamin K Intake Varies by TG Response, but Not Age or Vitamin K Status, in Older and Younger Adults. Journal of Nutrition, 2019, 149, 18-25.	2.9	9
44	Target region amplification polymorphism (TRAP) for assessing genetic diversity and marker-trait associations in chickpea (Cicer arietinum L.) germplasm. Genetic Resources and Crop Evolution, 2014, 61, 965-977.	1.6	8
45	Seed Protein Percentage and Mineral Concentration Variability and Their Correlation with Other Seed Quality Traits in the U.S. Peanut Mini-Core Collection. Peanut Science, 2016, 43, 119-125.	0.1	6
46	Genetic Diversity for Seed Mineral Composition in the Wild Legume Teramnus labialis. Plant Foods for Human Nutrition, 2008, 63, 105-109.	3.2	5
47	A rapid and efficient method to study the function of crop plant transporters in Arabidopsis. Protoplasma, 2017, 254, 737-747.	2.1	4
48	National Academies report has broad support. Nature Biotechnology, 2017, 35, 304-306.	17.5	3
49	Summary of the IX international symposium on iron nutrition and interactions in plants. Journal of Plant Nutrition, 2000, 23, 2083-2102.	1.9	2
50	EFFECT OF MATURITY STAGES FOR WINTER- AND SPRING-SOWN CHICKPEA (CICER ARIETINUML.) ON SEED MINERAL CONTENT. Journal of Plant Nutrition, 2010, 33, 2094-2103.	1.9	2
51	Reply to MB Krawinkel. American Journal of Clinical Nutrition, 2009, 90, 696-697.	4.7	0
52	Response to the Letter to the Editor of <i>Crop Science</i> from Donald R. Davis Regarding Our Research Article Entitled "Mineral Concentration of Broccoli Florets in Relation to Year of Cultivar Release―Published in <i>Crop Science</i> (2011 51:2721–2727). Crop Science, 2013, 53, 1830-1831.	1.8	0
53	Bioconversion of spinach β arotene to vitamin A in Chinese children with normal or marginal vitamin A status. FASEB Journal, 2006, 20, A1319.	0.5	0
54	Plasma alphaâ€ŧocopherol transport studied using deuteriumâ€ŀabeled collard greens. FASEB Journal, 2012, 26, .	0.5	0

#	Article	IF	CITATIONS
55	Absorption and Excretion of Vitamin K Varies by Age and Triglycerides: A Metabolic Study in Older and Younger Adults Using Deuteriumâ€Labeled Collard Greens. FASEB Journal, 2017, 31, 148.3.	0.5	0