Magdalena OÄ**‡**vieja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6212388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design cytotoxicity: The effect of silver nanoparticles stabilized by selected antioxidants on melanoma cells. Journal of Applied Toxicology, 2022, 42, 570-587.	1.4	11
2	Phytotoxicity of Silver Nanoparticles with Different Surface Properties on Monocots and Dicots Model Plants. Journal of Soil Science and Plant Nutrition, 2022, 22, 1647-1664.	1.7	27
3	Characterization of selected parameters of Chlorella vulgaris microalgae after short-term exposure to gold nanoparticles with different surface properties. Journal of Environmental Chemical Engineering, 2022, 10, 108248.	3.3	3
4	Hematite/Polystyrene Raspberry‣ike Microcomposites as Stable Support for Silver Nanoparticle Immobilization. Particle and Particle Systems Characterization, 2021, 38, 2000239.	1.2	0
5	Cytotoxicity studies of protein-stabilized fluorescent gold nanoclusters on human lymphocytes. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111593.	2.5	15
6	Antioxidantâ€nodulated cytotoxicity of silver nanoparticles. Journal of Applied Toxicology, 2021, 41, 1863-1878.	1.4	8
7	The surface-dependent biological effect of protein-gold nanoclusters on human immune system mimetic cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 620, 126569.	2.3	7
8	Silver Nanoparticles and Silver Ions Differentially Affect the Phytohormone Balance and Yield in Wheat. Agriculture (Switzerland), 2021, 11, 729.	1.4	10
9	Antibacterial and Antifungal Properties of Silver Nanoparticles—Effect of a Surface-Stabilizing Agent. Biomolecules, 2021, 11, 1481.	1.8	37
10	Spectroscopic insights into the effect of pH, temperature, and stabilizer on erlotinib adsorption behavior onto Ag nanosurface. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117737.	2.0	8
11	Nanoscale image of the drug/metal mono-layer interaction: Tapping AFM-IR investigations. Nano Research, 2020, 13, 1020-1028.	5.8	18
12	Sodium hexametaphosphate–induced enhancement of silver nanoparticle toxicity towards leukemia cells. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	6
13	Gold nanoparticles deposited on silica microparticles - Electrokinetic characteristics and application in SERS. Colloids and Interface Science Communications, 2019, 33, 100219.	2.0	17
14	Gold substrates of controlled roughness and electrokinetic properties formed by nanoparticle deposition. Physical Chemistry Chemical Physics, 2019, 21, 6535-6543.	1.3	7
15	Electrokinetic properties of cysteine-stabilized silver nanoparticles dispersed in suspensions and deposited on solid surfaces in the form of monolayers. Electrochimica Acta, 2019, 297, 1000-1010.	2.6	8
16	Hematite/silica nanoparticle bilayers on mica: AFM and electrokinetic characterization. Physical Chemistry Chemical Physics, 2018, 20, 15368-15379.	1.3	11
17	Silver nanoparticle/fibrinogen bilayers – Mechanism of formation and stability determined by in situ electrokinetic measurements. Journal of Colloid and Interface Science, 2018, 513, 170-179.	5.0	5
18	Early plant growth and bacterial community in rhizoplane of wheat and flax exposed to silver and titanium dioxide nanonarticles. Environmental Science and Pollution Research, 2018, 25, 33820-33826	2.7	18

Magdalena Oćwieja

#	Article	IF	CITATIONS
19	Self-assembly of cysteine-functionalized silver nanoparticles at solid/liquid interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 520-530.	2.3	1
20	Gold Nanoparticle Layers on Polystyrene Microspheres of Controlled Structure and Electrokinetic Properties. Langmuir, 2018, 34, 8489-8498.	1.6	16
21	Formation, properties and stability of silver nanoparticle monolayers at PDADMAC modified polystyrene microparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 317-325.	2.3	5
22	Preparation of iron oxide nanoparticles doped by chromium for application in water–gas shift reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 523, 71-80.	2.3	5
23	Formation of positively charged gold nanoparticle monolayers on silica sensors. Journal of Colloid and Interface Science, 2017, 501, 192-201.	5.0	27
24	Formation and stability of manganese-doped ZnS quantum dot monolayers determined by QCM-D and streaming potential measurements. Journal of Colloid and Interface Science, 2017, 503, 186-197.	5.0	12
25	Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60. Colloids and Surfaces B: Biointerfaces, 2017, 156, 397-404.	2.5	45
26	Physicochemical properties and cytotoxicity of cysteine-functionalized silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2017, 160, 429-437.	2.5	28
27	Monitoring the Interfacial Behavior of Selective Y5 Receptor Antagonist on Colloidal Gold Nanoparticle Surfaces: Surface-Enhanced Vibrational Spectroscopy Studies. Journal of Physical Chemistry C, 2017, 121, 17276-17288.	1.5	15
28	Toxicological effects of three types of silver nanoparticles and their salt precursors acting on human U-937 and HL-60 cells. Toxicology Mechanisms and Methods, 2017, 27, 58-71.	1.3	11
29	Homogeneous gold nanoparticle monolayers—QCM and electrokinetic characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 226-235.	2.3	22
30	Monolayers of silver nanoparticles on positively charged polymer microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 499, 1-9.	2.3	13
31	Gold Nanoparticle Monolayers of Controlled Coverage and Structure. Journal of Physical Chemistry C, 2016, 120, 11807-11819.	1.5	24
32	Oxidative dissolution of silver nanoparticles: A new theoretical approach. Journal of Colloid and Interface Science, 2016, 469, 355-364.	5.0	44
33	Gold nanoparticles and ions – friends or foes? As they are seen by human cells U-937 and HL-60. Journal of Experimental Nanoscience, 2016, 11, 564-580.	1.3	10
34	pH-controlled desorption of silver nanoparticles from monolayers deposited on PAH-covered mica. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	4
35	Cytotoxic Activity of Highly Purified Silver Nanoparticles Sol Against Cells of Human Immune System. Applied Biochemistry and Biotechnology, 2015, 176, 817-834.	1.4	33
36	Monolayers of poly-l-lysine on mica – Electrokinetic characteristics. Journal of Colloid and Interface Science, 2015, 456, 116-124.	5.0	32

Magdalena Oćwieja

#	Article	IF	CITATIONS
37	Kinetics of Silver Nanoparticle Deposition at PAH Monolayers: Reference QCM Results. Langmuir, 2015, 31, 2988-2996.	1.6	43
38	Deposition of silver nanoparticles from suspensions containing tannic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 477, 70-76.	2.3	5
39	Influence of supporting polyelectrolyte layers on the coverage and stability of silver nanoparticle coatings. Journal of Colloid and Interface Science, 2015, 445, 205-212.	5.0	19
40	Adsorption of tannic acid on polyelectrolyte monolayers determined in situ by streaming potential measurements. Journal of Colloid and Interface Science, 2015, 438, 249-258.	5.0	41
41	Silver particle monolayers — Formation, stability, applications. Advances in Colloid and Interface Science, 2015, 222, 530-563.	7.0	60
42	Hematite/silver nanoparticle bilayers on mica – AFM, SEM and streaming potential studies. Journal of Colloid and Interface Science, 2014, 424, 75-83.	5.0	27
43	Monolayers of silver nanoparticles obtained by chemical reduction methods. Surface Innovations, 2014, 2, 160-172.	1.4	25
44	Self-assembled silver nanoparticles monolayers on mica-AFM, SEM, and electrokinetic characteristics. Journal of Nanoparticle Research, 2013, 15, 1460.	0.8	29
45	Stability of silver nanoparticle monolayers determined by in situ streaming potential measurements. Journal of Nanoparticle Research, 2013, 15, 2076.	0.8	14
46	Controlled Release of Silver Nanoparticles from Monolayers Deposited on PAH Covered Mica. Langmuir, 2013, 29, 3546-3555.	1.6	31
47	Hematite nanoparticle monolayers on mica electrokinetic characteristics. Journal of Colloid and Interface Science, 2012, 386, 121-128.	5.0	19
48	Hematite nanoparticle monolayers on mica preparation by controlled self-assembly. Journal of Colloid and Interface Science, 2012, 386, 51-59.	5.0	28
49	Hematite nanoparticle monolayers on mica: Characterization by colloid deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 412, 72-81.	2.3	10
50	Tuning properties of silver particle monolayers via controlled adsorption–desorption processes. Journal of Colloid and Interface Science, 2012, 376, 1-11.	5.0	42
51	High density silver nanoparticle monolayers produced by colloid self-assembly on polyelectrolyte supporting layers. Journal of Colloid and Interface Science, 2011, 364, 39-48.	5.0	72
52	Kinetics of silver nanoparticle deposition onto poly(ethylene imine) modified mica determined by AFM and SEM measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 261-268.	2.3	20
53	Silver nanoparticle monolayers on poly(ethylene imine) covered mica produced by colloidal self-assembly. Journal of Colloid and Interface Science, 2010, 345, 187-193.	5.0	15
54	Phytotoxicity of silver nanoparticles and silver ions toward common wheat. Surface Innovations, 0, , 1-11.	1.4	8