Radovan Sebesta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6212014/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalysts with ionic tag and their use in ionic liquids. Green Chemistry, 2008, 10, 484.	9.0	174
2	How we drifted into peptide chemistry and where we have arrived at. Tetrahedron, 2004, 60, 7455-7506.	1.9	110
3	The Proteolytic Stability of †Designed'β-Peptides Containingα-Peptide-Bond Mimics and of Mixedα,β-Pept Application to the Construction of MHC-Binding Peptides. Chemistry and Biodiversity, 2005, 2, 591-632.	ides: 2.1	108
4	Green Asymmetric Organocatalysis. ChemSusChem, 2020, 13, 2828-2858.	6.8	107
5	Are Ionic Liquids Suitable Media for Organocatalytic Reactions?. European Journal of Organic Chemistry, 2009, 2009, 321-327.	2.4	93
6	Ferrocene phosphane-heteroatom/carbon bidentate ligands in asymmetric catalysis. Dalton Transactions, 2014, 43, 16557-16579.	3.3	88
7	Enantioselective C–C and C–heteroatom bond forming reactions using chiral ferrocene catalysts. Tetrahedron, 2014, 70, 759-786.	1.9	66
8	Catalytic enantioselective conjugate addition of dialkylzinc reagents to N-substituted-2,3-dehydro-4-piperidones. Chemical Communications, 2005, , 1711-1713.	4.1	60
9	Synthesis, and Helix or Hairpin-Turn Secondary Structures of â€~Mixed'α/β-Peptides Consisting of Residues with Proteinogenic Side Chains and of 2-Amino-2-methylpropanoic Acid (Aib). Helvetica Chimica Acta, 2006, 89, 1801-1825.	1.6	57
10	Domino Reactions Initiated by Enantioselective Cu atalyzed Conjugate Addition. European Journal of Organic Chemistry, 2012, 2012, 6688-6695.	2.4	56
11	Experimental and Theoretical Studies in Hydrogen-Bonding Organocatalysis. Molecules, 2015, 20, 15500-15524.	3.8	53
12	Asymmetric Transition-Metal Catalysis in the Formation and Functionalization of Metal Enolates. ACS Catalysis, 2019, 9, 3104-3143.	11.2	52
13	Enantioselective Preparation of 2-Aminomethyl Carboxylic Acid Derivatives: Solving the 2-Amino Acid Problem with the Chiral Auxiliary 4-Isopropyl-5,5-diphenyloxazolidin-2-one (DIOZ). Preliminary Communication. Helvetica Chimica Acta, 2003, 86, 1852-1861.	1.6	50
14	Enantioselective Michael addition of 1,3-dicarbonyl compounds to a nitroalkene catalyzed by chiral squaramides – a key step in the synthesis of pregabalin. Organic and Biomolecular Chemistry, 2013, 11, 7705.	2.8	44
15	Organocatalytic Reactions Under Unusual Conditions. Current Organic Chemistry, 2011, 15, 2257-2281.	1.6	43
16	Enantioselective organocatalysis using SOMO activation. New Journal of Chemistry, 2016, 40, 4855-4864.	2.8	41
17	Applications of Ferrocenium Salts in Organic Synthesis. Synthesis, 2015, 47, 1683-1695.	2.3	40
18	Copperâ€Catalyzed Enantioselective Conjugate Addition of Organometallic Reagents to Acyclic Dienones. Advanced Synthesis and Catalysis, 2007, 349, 1931-1937.	4.3	39

#	Article	IF	CITATIONS
19	Enantioselective Cuâ€Catalyzed Functionalizations of Unactivated Alkenes. ChemCatChem, 2016, 8, 2581-2588.	3.7	39
20	Higher enantioselectivities in thiourea-catalyzed Michael additions under solvent-free conditions. Tetrahedron, 2014, 70, 901-905.	1.9	37
21	Organocatalyst Efficiency in the Michael Additions of Aldehydes to Nitroalkenes in Water and in a Ballâ€Mill. ChemCatChem, 2012, 4, 1013-1018.	3.7	35
22	Bifunctional Amine-Squaramides as Organocatalysts in Michael/Hemiketalization Reactions of β,γ-Unsaturated α-Ketoesters and α,β-Unsaturated Ketones with 4-Hydroxycoumarins. Journal of Organic Chemistry, 2018, 83, 13111-13120.	3.2	31
23	Thiol-Free Synthesis of Oseltamivir and Its Analogues via Organocatalytic Michael Additions of Oxyacetaldehydes to 2-Acylaminonitroalkenes. Synthesis, 2012, 44, 2424-2430.	2.3	28
24	Enantioselective One-Pot Conjugate Addition of Grignard Reagents to Cyclic Enones Followed by Amidomethylation. Journal of Organic Chemistry, 2012, 77, 760-765.	3.2	28
25	Mechanochemically Activated Asymmetric Organocatalytic Domino Mannich Reaction-Fluorination. ACS Sustainable Chemistry and Engineering, 2020, 8, 14417-14424.	6.7	28
26	Ferrocene phosphane–carbene ligands in Cu-catalyzed enantioselective 1,4-additions of Grignard reagents to α,β-unsaturated carbonyl compounds. Journal of Organometallic Chemistry, 2013, 737, 47-52.	1.8	27
27	New [5]ferrocenophane diphosphine ligands for Pd-catalyzed allylic substitution. Tetrahedron: Asymmetry, 2006, 17, 2531-2537.	1.8	25
28	Squaramide-Catalyzed Michael Addition as a Key Step for the Direct Synthesis of GABAergic Drugs. Synthesis, 2016, 48, 1474-1482.	2.3	25
29	Asymmetric Mannich reaction catalyzed by N-arylsulfonyl-l-proline amides. Tetrahedron: Asymmetry, 2010, 21, 58-61.	1.8	24
30	Synthesis of Substituted (Rp)-2-Aminomethyl-1-[(S)-4-isopropyloxazolin-2-yl]ferrocenes. European Journal of Organic Chemistry, 2002, 2002, 692-695.	2.4	21
31	Asymmetric organocatalyzed Michael addition of aldehydes to β-nitrostyrene in ionic liquids. Tetrahedron: Asymmetry, 2009, 20, 2403-2406.	1.8	21
32	Diastereoselective Mannich Reaction of Chiral Enolates Formed by Enantioselective Conjugate Addition of Grignard Reagents. European Journal of Organic Chemistry, 2011, 2011, 7092-7096.	2.4	21
33	Asymmetric copper-catalyzed conjugate additions of organometallic reagents in the syntheses of natural compounds and pharmaceuticals. Organic and Biomolecular Chemistry, 2020, 18, 3780-3796.	2.8	21
34	[5]Ferrocenophanene–Phosphane Ligands for Enantioselective Rhâ€Catalyzed Conjugate Additions. European Journal of Organic Chemistry, 2011, 2011, 6110-6116.	2.4	20
35	Asymmetric organocatalytic SOMO reactions of enol silanes and silyl ketene (thio)acetals. Organic and Biomolecular Chemistry, 2014, 12, 9446-9452.	2.8	20
36	[5]Ferrocenophane based ligands for stereoselective Rh-catalyzed hydrogenation and Cu-catalyzed Michael addition. Tetrahedron: Asymmetry, 2007, 18, 1893-1898.	1.8	18

#	Article	IF	CITATIONS
37	Enantioselective Oneâ€Pot Conjugate Addition of Grignard Reagents Followed by a Mannich Reaction. European Journal of Organic Chemistry, 2010, 2010, 5666-5671.	2.4	18
38	Imidazolium-tagged ferrocenyl diphosphanes in allylic substitution with heteroatom nucleophiles. Tetrahedron: Asymmetry, 2009, 20, 1892-1896.	1.8	17
39	Influence of structural changes in ferrocene phosphane aminophosphane ligands on their catalytic activity. Journal of Organometallic Chemistry, 2009, 694, 1898-1902.	1.8	17
40	Asymmetric allylic substitutions on symmetrical and non-symmetrical substrates using [5]ferrocenophane ligands. Tetrahedron: Asymmetry, 2010, 21, 1910-1915.	1.8	17
41	Asymmetric Mannich reactions catalyzed by proline and 4-hydroxyproline derived organocatalysts in the presence of water. Tetrahedron: Asymmetry, 2013, 24, 548-552.	1.8	17
42	Preparation of (S,S)-Fmoc-β2hlle-OH, (S)-Fmoc-β2hMet-OH, and (S)-Fmoc-β2hTyr(tBu)-OH for Solid-Phase Syntheses ofβ2- andβ2/β3-Peptides. Helvetica Chimica Acta, 2003, 86, 4061-4072.	1.6	16
43	Enantioselective Organocatalytic Michael Additions of Oxyacetaldehydes to Nitroolefins. European Journal of Organic Chemistry, 2010, 2010, 6430-6435.	2.4	16
44	Enantioselective <i>Michael</i> Addition of the 2â€(1â€Ethylpropoxy)acetaldehyde to <i>N</i> â€{(1 <i>Z</i>)â€2â€Nitroethenyl]acetamide – Optimization of the Key Step in the Organocatalytic Oseltamivir Synthesis. Helvetica Chimica Acta, 2012, 95, 2421-2428.	1.6	16
45	TADDOLâ€Based Phosphane–Phosphite Ligands in Enantioselective Cuâ€Catalyzed Grignard 1,4â€Additions Followed by Mannichâ€Type Alkylations. European Journal of Organic Chemistry, 2012, 2012, 6285-6290.	2.4	16
46	Imidazolium-Tagged Ferrocene Ligands. Collection of Czechoslovak Chemical Communications, 2007, 72, 1057-1068.	1.0	15
47	[3]Ferrocenophane Ligands with an Inserted Methylene Group. European Journal of Organic Chemistry, 2008, 2008, 5157-5161.	2.4	15
48	Organocatalyst Efficiency in the αâ€Aminoxylation and αâ€Hydrazination of Carbonyl Derivatives in Aqueous Media or in a Ballâ€Mill. European Journal of Organic Chemistry, 2017, 2017, 1191-1195.	2.4	15
49	Enantioselective addition of oxazolones to N-protected imines catalysed by chiral thioureas. RSC Advances, 2015, 5, 12890-12893.	3.6	14
50	Organocatalytic diastereoselective synthesis of spirooxindoles via [3+2] cycloadditions of azomethine ylides with α,β-unsaturated esters. New Journal of Chemistry, 2017, 41, 5506-5512.	2.8	14
51	Stereoselective domino conjugate addition of Grignard reagents to lactones followed by reaction with activated alkenes catalyzed by ferrocenyl carbene ligands. Tetrahedron: Asymmetry, 2015, 26, 271-275.	1.8	13
52	Asymmetric Oneâ€Pot Conjugate Addition of Grignard Reagents to α,βâ€Unsaturated Compounds Followed by Reaction with Carbenium Ions. Advanced Synthesis and Catalysis, 2015, 357, 1493-1498.	4.3	13
53	Computational study of diastereoselective ortho-lithiations of chiral ferrocenes. Organic and Biomolecular Chemistry, 2014, 12, 132-140.	2.8	12
54	Enantioselective reductions of [m] ferrocenophanones. Journal of Organometallic Chemistry, 2008, 693, 3131-3134.	1.8	11

#	Article	IF	CITATIONS
55	Explanation of Different Regioselectivities in the <i>ortho</i> ‣ithiation of Ferrocenyl(phenyl)methanamines. European Journal of Organic Chemistry, 2013, 2013, 111-116.	2.4	11
56	Enantioselective Synthesis of 2,3â€Dihydrofurocoumarins by Squaramideâ€Catalyzed Michael Addition/Cyclization of 4â€Hydroxycoumarins with βâ€Nitrostyrenes. ChemistrySelect, 2018, 3, 1466-1471.	1.5	11
57	Trapping of chiral enolates generated by Lewis acid promoted conjugate addition of Grignard reagents to unreactive Michael acceptors by various electrophiles. Chemical Communications, 2019, 55, 11766-11769.	4.1	11
58	Bioactive Carbocyclic Nucleoside Analogues - Syntheses and Properties of Entecavir. Current Organic Chemistry, 2014, 18, 2808-2832.	1.6	11
59	Asymmetric Copper atalyzed 1,4â€Additions and Allylic Substitutions with Nucleophiles Formed by the Hydrometalation of Alkenes. ChemCatChem, 2013, 5, 1069-1071.	3.7	10
60	Retroâ€Brook Rearrangement of Ferroceneâ€Derived Silyl Ethers. Chemistry - A European Journal, 2015, 21, 13445-13453.	3.3	10
61	Enantioselective Michael Reaction of Acetals with Nitroalkenes: An Improvement of the Oseltamivir Synthesis. ACS Sustainable Chemistry and Engineering, 2015, 3, 3429-3434.	6.7	10
62	Stereoisomers of oseltamivir – synthesis, in silico prediction and biological evaluation. Organic and Biomolecular Chemistry, 2017, 15, 1828-1841.	2.8	10
63	Electrophilic Trapping of Zirconium Enolates Obtained by Copper-Catalyzed Addition of In Situ Generated Organozirconium Reagents. Synthesis, 2017, 49, 2461-2469.	2.3	10
64	Organocatalysts Effect on the Stereoselectivity of [2,3]â€Wittig Rearrangement. European Journal of Organic Chemistry, 2019, 2019, 605-610.	2.4	10
65	A Practical Three-Step Synthesis of Vinylferrocene. Synthesis, 2018, 50, 760-763.	2.3	9
66	Bifunctional Thio/Squaramide Catalyzed Stereoselective Michael Additions of Aldehydes to Nitroalkenes towards Synthesis of Chiral Pyrrolidines. ChemistrySelect, 2019, 4, 8870-8875.	1.5	9
67	Diastereoselective Pd-Catalyzed C–H Arylation of Ferrocenylmethanamines with Arylboronic Acids or Pinacol Esters. Journal of Organic Chemistry, 2019, 84, 7312-7319.	3.2	9
68	Are Organozirconium Reagents Applicable in Current Organic Synthesis?. Synthesis, 2021, 53, 447-460.	2.3	9
69	Organocatalytic oxa-Diels–Alder reaction of α,β-unsaturated ketones under non-classical conditions. New Journal of Chemistry, 2015, 39, 2573-2579.	2.8	8
70	Hybrid Peptide–Thiourea Catalyst for Asymmetric Michael Additions of Aldehydes to Heterocyclic Nitroalkenes. Journal of Organic Chemistry, 2021, 86, 581-592.	3.2	8
71	Diastereoselective ortho-lithiation of [5]ferrocenophanes. Journal of Organometallic Chemistry, 2011, 696, 2600-2606.	1.8	7
72	Synthesis of aryl(ferrocenyl)methanols via an enantioselective addition of arylboronic acids. Tetrahedron: Asymmetry, 2011, 22, 536-540.	1.8	7

#	Article	IF	CITATIONS
73	Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids. Chemical Papers, 2013, 67, .	2.2	7
74	Assessment of non-standard reaction conditions for asymmetric 1,3-dipolar organocatalytic cycloaddition of nitrone with $\hat{I}\pm,\hat{I}^2$ -unsaturated aldehydes. Chemical Papers, 2015, 69, .	2.2	7
75	Synthesis of epimer of Taniaphos ligand. Journal of Organometallic Chemistry, 2016, 805, 130-138.	1.8	7
76	Synthesis of Chiral 3,4â€Disubstituted Pyrrolidines with Antibacterial Properties. European Journal of Organic Chemistry, 2020, 2020, 2565-2575.	2.4	7
77	Diastereoselective Double Câ€H Functionalization of Chiral Ferrocenes with Heteroaromatics. Chemistry - A European Journal, 2021, 27, 15501-15507.	3.3	7
78	Peptide-catalyzed stereoselective Michael addition of aldehydes and ketones to heterocyclic nitroalkenes. Monatshefte Für Chemie, 2018, 149, 729-736.	1.8	6
79	Reductions of Imines Using Zirconocene Chloride Hydride. European Journal of Organic Chemistry, 2019, 7606-7612.	2.4	6
80	Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation. Chemical Papers, 2011, 65, .	2.2	5
81	Enantioselective Michael additions of aldehydes to nitroalkenes catalyzed with ionically tagged organocatalyst. Open Chemistry, 2014, 12, 416-425.	1.9	5
82	Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes. Chemical Papers, 2014, 68, .	2.2	5
83	Optimization of stereoselective Michael addition of 2-(pentan-3-yloxy)acetaldehyde to N-[(Z)-2-nitroethenyl]acetamide with the aid of design of experiments. Monatshefte Für Chemie, 2015, 146, 1541-1545.	1.8	5
84	Enantioselective copper-catalyzed conjugate additions of in situ generated organozirconium reagents to N -heterocyclic Michael acceptors. Journal of Organometallic Chemistry, 2018, 856, 100-108.	1.8	5
85	Synthesis and structural characterisation of Group 11 metal complexes with a phosphinoferrocene oxazoline. New Journal of Chemistry, 2018, 42, 11450-11457.	2.8	5
86	Transformation of Racemic Azlactones into Enantioenriched Dihydropyrroles and Lactones Enabled by Hydrogenâ€Bond Organocatalysis. European Journal of Organic Chemistry, 2019, 2019, 6077-6087.	2.4	5
87	Organocatalytic Diastereodivergent Enantioselective Formal oxaâ€Dielsâ€Alder Reaction of Unsaturated Ketones with Enoates Under Liquidâ€Assisted Grinding Conditions. ChemSusChem, 2022, 15, .	6.8	5
88	Derivatives of (S)-{[2-(Methoxymethyl)pyrrolidin-1-yl]methyl}ferrocene - New Planar Chiral Ligands. Collection of Czechoslovak Chemical Communications, 2002, 67, 1700-1708.	1.0	4
89	Diastereoselective copper-catalysed 1,4-addition of Grignard reagents to N-enoyl oxazolidinones. RSC Advances, 2013, 3, 9881.	3.6	4
90	Investigations towards the stereoselective organocatalyzed Michael addition of dimethyl malonate to a racemic nitroalkene: possible route to the 4-methylpregabalin core structure. Beilstein Journal of Organic Chemistry, 2018, 14, 553-559.	2.2	4

#	Article	IF	CITATIONS
91	Reductive alkylation of imines via asymmetric Cu-catalyzed addition of organozirconium reagents. Journal of Organometallic Chemistry, 2020, 908, 121099.	1.8	4
92	Stereoselective Organocatalytic Construction of Spiro Oxindole Pyrrolidines Using Unsaturated αâ€Ketoesters and αâ€Ketoamides. European Journal of Organic Chemistry, 2021, 2021, 1693-1703.	2.4	4
93	N-Sulfinylpyrrolidine-containing ureas and thioureas as bifunctional organocatalysts. Beilstein Journal of Organic Chemistry, 2021, 17, 2629-2641.	2.2	4
94	Fe–Li Interactions in Ferrocenyllithium Compounds. European Journal of Inorganic Chemistry, 2017, 2017, 483-488.	2.0	3
95	Asymmetric Sequential Michael Addition and Cyclization Reactions of 2-(2-Nitrovinyl)phenols Catalyzed by Bifunctional Amino-Squaramides. SynOpen, 2021, 05, 278-284.	1.7	3
96	β2-Amino Acids with Proteinogenic Side Chains and Corresponding Peptides: Synthesis, Secondary Structure, and Biological Activity. , 2005, , 593-617.		2
97	Why do thioureas and squaramides slow down the Ireland–Claisen rearrangement?. Beilstein Journal of Organic Chemistry, 2019, 15, 2948-2957.	2.2	2
98	Isomerization of Ferrocenyl Phosphinites to Phosphane-oxides and retro-Phospha-Brook Rearrangement. Journal of Organometallic Chemistry, 2021, 941, 121801.	1.8	2
99	New advances in asymmetric organocatalysis. Beilstein Journal of Organic Chemistry, 2022, 18, 240-242.	2.2	2
100	Asymmetric Tandem Conjugate Addition and Reaction with Carbocations on Unsaturated Heterocycles. Advanced Synthesis and Catalysis, 2022, 364, 1337-1344.	4.3	2
101	Proâ€Pro Dipeptideâ€Thiourea Organocatalyst in the Mannich Reaction between αâ€Imino Esters and Pyruvates. European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
102	Professor Dr. Åtefan Toma—excellent scientist and teacher—celebrates his 75th birthday. Chemical Papers, 2013, 67, 1-2.	2.2	1
103	Synthesis of sulfone analog of oseltamivir precursor. Chemical Papers, 2018, 72, 221-227.	2.2	1
104	Copper-catalyzed conjugate addition of in situ formed alkyl boranes to α,β-unsaturated ketones. Monatshefte Für Chemie, 2019, 150, 295-302.	1.8	1
105	Derivatives of (S)-{[2-(Methoxymethyl)pyrrolidin-1-yl]methyl}ferrocene — New Planar Chiral Ligands ChemInform, 2003, 34, no.	0.0	0
106	How We Drifted into Peptide Chemistry and Where We Have Arrived at. ChemInform, 2004, 35, no.	0.0	0
107	Catalytic Enantioselective Conjugate Addition of Dialkylzinc Reagents to N-Substituted-2,3-dehydro-4-piperidones ChemInform, 2005, 36, no.	0.0	0
108	Chapter 1. Ionically-tagged Transition Metal Catalysts. RSC Green Chemistry, 0, , 1-17.	0.1	0