
## **Christian Conoscenti**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6211742/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF               | CITATIONS            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|
| 1  | Doing more with less: A comparative assessment between morphometric indices and machine learning models for automated gully pattern extraction (A case study: Dashtiari region, Sistan and) Tj ETQq1 1 0.784314 rg         | gBT /Overl       | o <b>o</b> k 10 Tf 5 |
| 2  | Application of the group method of data handling (GMDH) approach for landslide susceptibility zonation using readily available spatial covariates. Catena, 2022, 208, 105779.                                              | 2.2              | 34                   |
| 3  | Landform classification: a high-performing mapping unit partitioning tool for landslide susceptibility assessment—a test in the Imera River basin (northern Sicily, Italy). Landslides, 2022, 19, 539-553.                 | 2.7              | 15                   |
| 4  | Investigating Limits in Exploiting Assembled Landslide Inventories for Calibrating Regional<br>Susceptibility Models: A Test in Volcanic Areas of El Salvador. Applied Sciences (Switzerland), 2022, 12,<br>6151.          | 1.3              | 6                    |
| 5  | Optimal slope units partitioning in landslide susceptibility mapping. Journal of Maps, 2021, 17, 152-162.                                                                                                                  | 1.0              | 22                   |
| 6  | Mapping Susceptibility to Debris Flows Triggered by Tropical Storms: A Case Study of the San Vicente<br>Volcano Area (El Salvador, CA). Earth, 2021, 2, 66-85.                                                             | 0.9              | 6                    |
| 7  | Evaluation of multi-hazard map produced using MaxEnt machine learning technique. Scientific<br>Reports, 2021, 11, 6496.                                                                                                    | 1.6              | 63                   |
| 8  | Predicting sediment deposition rate in check-dams using machine learning techniques and high-resolution DEMs. Environmental Earth Sciences, 2021, 80, 1.                                                                   | 1.3              | 12                   |
| 9  | Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Science<br>Reviews, 2021, 218, 103637.                                                                                          | 4.0              | 111                  |
| 10 | Predicting gully occurrence at watershed scale: Comparing topographic indices and multivariate statistical models. Geomorphology, 2020, 359, 107123.                                                                       | 1.1              | 29                   |
| 11 | Data Mining Technique (Maximum Entropy Model) for Mapping Gully Erosion Susceptibility in the Gorganrood Watershed, Iran. Advances in Science, Technology and Innovation, 2020, , 427-448.                                 | 0.2              | 6                    |
| 12 | A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Science of the Total Environment, 2019, 660, 443-458.                                          | 3.9              | 189                  |
| 13 | Gully erosion susceptibility mapping using GIS-based multi-criteria decision analysis techniques.<br>Catena, 2019, 180, 282-297.                                                                                           | 2.2              | 85                   |
| 14 | Prediction of debris-avalanches and -flows triggered by a tropical storm by using a stochastic<br>approach: An application to the events occurred in Mocoa (Colombia) on 1 April 2017. Geomorphology,<br>2019, 339, 31-43. | 1.1              | 22                   |
| 15 | Predicting the landslides triggered by the 2009 96E/Ida tropical storms in the llopango caldera area (El) Tj ETQq1<br>Sciences, 2019, 78, 1.                                                                               | l 0.78431<br>1.3 | 4 rgBT /Ove<br>17    |
| 16 | PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches. Science of the Total Environment, 2019, 664, 296-311.                                                                    | 3.9              | 84                   |
| 17 | Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Science of the Total Environment, 2019, 664, 1117-1132.                  | 3.9              | 137                  |
| 18 | Gully Erosion Susceptibility Mapping Using Multivariate Adaptive Regression Splines—Replications and<br>Sample Size Scenarios. Water (Switzerland), 2019, 11, 2319.                                                        | 1.2              | 25                   |

CHRISTIAN CONOSCENTI

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Assessment of Gully Erosion Susceptibility Using Multivariate Adaptive Regression Splines and Accounting for Terrain Connectivity. Land Degradation and Development, 2018, 29, 724-736.                                                                                          | 1.8 | 71        |
| 20 | Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma, 2018, 330, 65-78.                                                                                                                                 | 2.3 | 111       |
| 21 | Hillslope degradation in representative <scp>Italian</scp> areas: Just soil erosion risk or opportunity for development?. Land Degradation and Development, 2018, 29, 3050-3068.                                                                                                 | 1.8 | 51        |
| 22 | Evaluation of debris flow susceptibility in El Salvador (CA): a comparison between Multivariate<br>Adaptive Regression Splines (MARS) and Binary Logistic Regression (BLR). Hungarian Geographical<br>Bulletin, 2018, 67, 361-373.                                               | 0.4 | 15        |
| 23 | Landslide susceptibility mapping using precipitation data, Mazandaran Province, north of Iran. Natural<br>Hazards, 2017, 89, 255-273.                                                                                                                                            | 1.6 | 15        |
| 24 | Improving transferability strategies for debris flow susceptibility assessment: Application to the Saponara and Itala catchments (Messina, Italy). Geomorphology, 2017, 288, 52-65.                                                                                              | 1.1 | 78        |
| 25 | Detection of homogeneous precipitation regions at seasonal and annual time scales, northwest Iran.<br>Journal of Water and Climate Change, 2017, 8, 701-714.                                                                                                                     | 1.2 | 13        |
| 26 | Pantelleria Island (Strait of Sicily): Volcanic History and Geomorphological Landscape. World<br>Geomorphological Landscapes, 2017, , 479-487.                                                                                                                                   | 0.1 | 3         |
| 27 | Geomorphology of the Capo San Vito Peninsula (NW Sicily): An Example of Tectonically and<br>Climatically Controlled Landscape. World Geomorphological Landscapes, 2017, , 455-465.                                                                                               | 0.1 | Ο         |
| 28 | Morphometric and hydraulic geometry assessment of a gully in SW Spain. Geomorphology, 2016, 274, 143-151.                                                                                                                                                                        | 1.1 | 19        |
| 29 | Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera<br>Meridionale River Basin (Sicily, Italy). Geomorphology, 2016, 262, 61-76.                                                                                                         | 1.1 | 58        |
| 30 | Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily,<br>Italy. Geomorphology, 2016, 261, 222-235.                                                                                                                               | 1.1 | 106       |
| 31 | Elaboración de modelos 3D de diferentes morfologÃas y escalas utilizando técnicas<br>Structure-from-Motion y fotografÃas terrestres. Cuaternario Y Geomorfologia, 2016, 30, 23.                                                                                                  | 0.2 | 2         |
| 32 | Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide<br>susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina<br>(Sicily, southern Italy). Natural Hazards, 2015, 79, 1621-1648. | 1.6 | 149       |
| 33 | Predicting storm-triggered debris flow events: application to the 2009 Ionian Peloritan disaster<br>(Sicily, Italy). Natural Hazards and Earth System Sciences, 2015, 15, 1785-1806.                                                                                             | 1.5 | 49        |
| 34 | Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two<br>mediterranean basins: advantages and limitations. Natural Hazards, 2015, 79, 291-314.                                                                                              | 1.6 | 202       |
| 35 | A new empirical model for estimating calanchi Erosion in Sicily, Italy. Geomorphology, 2015, 231, 292-300.                                                                                                                                                                       | 1.1 | 17        |
| 36 | Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate<br>adaptive regression splines: A case of the Belice River basin (western Sicily, Italy). Geomorphology,<br>2015, 242, 49-64.                                                    | 1.1 | 140       |

CHRISTIAN CONOSCENTI

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | GPS Monitoring of the Scopello (Sicily, Italy) DCSD Phenomenon: Relationships Between Surficial and Deep-Seated Morphodynamics. , 2015, , 1321-1325.                  |     | 2         |
| 38 | Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily<br>(Italy). Geomorphology, 2014, 204, 399-411.                    | 1.1 | 265       |
| 39 | Testing GIS-morphometric analysis of some Sicilian badlands. Catena, 2014, 113, 370-376.                                                                              | 2.2 | 27        |
| 40 | Forward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy). Landslides, 2014, 11, 639-653.    | 2.7 | 57        |
| 41 | A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily, Italy. Environmental<br>Earth Sciences, 2013, 70, 1179-1195.                       | 1.3 | 99        |
| 42 | Geomorphological, chemical and physical study of "calanchi―landforms in NW Sicily (southern Italy).<br>Geomorphology, 2012, 153-154, 219-231.                         | 1.1 | 32        |
| 43 | Slope units-based flow susceptibility model: using validation tests to select controlling factors.<br>Natural Hazards, 2012, 61, 143-153.                             | 1.6 | 44        |
| 44 | Exporting a Google Earthâ,,¢ aided earth-flow susceptibility model: a test in central Sicily. Natural<br>Hazards, 2012, 61, 103-114.                                  | 1.6 | 28        |
| 45 | The role of the diagnostic areas in the assessment of landslide susceptibility models: a test in the sicilian chain. Natural Hazards, 2011, 58, 981-999.              | 1.6 | 46        |
| 46 | Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a<br>test in Southern Sicily. Natural Hazards, 2008, 46, 287-305. | 1.6 | 75        |
| 47 | GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology, 2008, 94, 325-339.                                            | 1.1 | 92        |
| 48 | A multidisciplinary approach to the evaluation of the mechanism that triggered the Cerda landslide<br>(Sicily, Italy). Geomorphology, 2005, 65, 101-116.              | 1.1 | 50        |
| 49 | Geospatial analysis of drought tendencies in the Carpathians as reflected in a 50-year time series.<br>Hungarian Geographical Bulletin, 0, , 269-282.                 | 0.4 | 9         |