Eri Chatani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/621172/publications.pdf Version: 2024-02-01

FDI CHATANI

#	Article	IF	CITATIONS
1	Multistep growth of amyloid intermediates and its inhibition toward exploring therapeutic way: A case study using insulin B chain and fibrinogen. Biophysics and Physicobiology, 2022, 19, .	0.5	1
2	Pathway Dependence of the Formation and Development of Prefibrillar Aggregates in Insulin B Chain. Molecules, 2022, 27, 3964.	1.7	2
3	Multistep Changes in Amyloid Structure Induced by Cross-Seeding on a Rugged Energy Landscape. Biophysical Journal, 2021, 120, 284-295.	0.2	5
4	Functional Assembly of Caenorhabditis elegans Cytochrome b-2 (Cecytb-2) into Phospholipid Bilayer Nanodisc with Enhanced Iron Reductase Activity. Biomolecules, 2021, 11, 96.	1.8	1
5	Observing Development of Amyloid Prefibrillar Intermediates and their Interaction with Chaperones for Inhibiting the Fibril Formation. Seibutsu Butsuri, 2021, 61, 236-239.	0.0	0
6	Breakdown of supersaturation barrier links protein folding to amyloid formation. Communications Biology, 2021, 4, 120.	2.0	39
7	Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils. International Journal of Molecular Sciences, 2021, 22, 4349.	1.8	33
8	Cooperative Optical Trapping of Polystyrene Microparticle and Protein Forming a Submillimeter Linear Assembly of Microparticle. Journal of Physical Chemistry C, 2021, 125, 18988-18999.	1.5	8
9	lodine staining as a useful probe for distinguishing insulin amyloid polymorphs. Scientific Reports, 2020, 10, 16741.	1.6	8
10	Exploration of Insulin Amyloid Polymorphism Using Raman Spectroscopy and Imaging. Biophysical Journal, 2020, 118, 2997-3007.	0.2	12
11	Theoretical Modeling of Electronic Structures of Polyiodide Species Included in α-Cyclodextrin. Journal of Physical Chemistry B, 2020, 124, 4089-4096.	1.2	13
12	Structural Insights into the Inhibition of Amyloid Fibril Formation by Fibrinogen via Interaction with Prefibrillar Intermediates. Biochemistry, 2019, 58, 2769-2781.	1.2	10
13	9-Aryl-3-aminocarbazole as an Environment- and Stimuli-Sensitive Fluorogen and Applications in Lipid Droplet Imaging. Journal of Organic Chemistry, 2019, 84, 5535-5547.	1.7	12
14	A specific form of prefibrillar aggregates that functions as a precursor of amyloid nucleation. Scientific Reports, 2018, 8, 62.	1.6	21
15	Recent progress on understanding the mechanisms of amyloid nucleation. Biophysical Reviews, 2018, 10, 527-534.	1.5	108
16	Femtosecond-Laser-Enhanced Amyloid Fibril Formation of Insulin. Langmuir, 2017, 33, 8311-8318.	1.6	9
17	Heparin-dependent aggregation of hen egg white lysozyme reveals two distinct mechanisms of amyloid fibrillation. Journal of Biological Chemistry, 2017, 292, 21219-21230.	1.6	33
18	Early aggregation preceding the nucleation of insulin amyloid fibrils as monitored by small angle X-ray scattering. Scientific Reports, 2015, 5, 15485.	1.6	51

Eri Chatani

#	Article	IF	CITATIONS
19	Water Molecular System Dynamics Associated with Amyloidogenic Nucleation as Revealed by Real Time Near Infrared Spectroscopy and Aquaphotomics. PLoS ONE, 2014, 9, e101997.	1.1	57
20	Stepwise Organization of the β-Structure Identifies Key Regions Essential for the Propagation and Cytotoxicity of Insulin Amyloid Fibrils. Journal of Biological Chemistry, 2014, 289, 10399-10410.	1.6	58
21	Polymorphism of β2-Microglobulin Amyloid Fibrils Manifested by Ultrasonication-enhanced Fibril Formation in Trifluoroethanol. Journal of Biological Chemistry, 2012, 287, 22827-22837.	1.6	40
22	Kinetic Intermediates of β2-Microglobulin Fibril Elongation Probed by Pulse-Labeling H/D Exchange Combined with NMR Analysis. Journal of Molecular Biology, 2011, 405, 851-862.	2.0	19
23	1D1612 Mechanism of amyloid fibril formation as revealed by small angle X-ray scattering(Protein:) Tj ETQq1 1 0	.784314 r	gBT /Overloc
24	Pre-Steady-State Kinetic Analysis of the Elongation of Amyloid Fibrils of β2-Microglobulin with Tryptophan Mutagenesis. Journal of Molecular Biology, 2010, 400, 1057-1066.	2.0	27
25	Ultrasonication-dependent production and breakdown lead to minimum-sized amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11119-11124.	3.3	117
26	A Comprehensive Model for Packing and Hydration for Amyloid Fibrils of β2-Microglobulin. Journal of Biological Chemistry, 2009, 284, 2169-2175.	1.6	52
27	Conformation of Amyloid Fibrils of β2-Microglobulin Probed by Tryptophan Mutagenesis. Journal of Biological Chemistry, 2006, 281, 31061-31069.	1.6	47
28	Structural stability of amyloid fibrils of β2-microglobulin in comparison with its native fold. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1753, 64-75.	1.1	30
29	Seeding-dependent Maturation of $\hat{1}^2$ -Microglobulin Amyloid Fibrils at Neutral pH. Journal of Biological Chemistry, 2005, 280, 12012-12018.	1.6	62
30	Critical Balance of Electrostatic and Hydrophobic Interactions Is Required for β2-Microglobulin Amyloid Fibril Growth and Stability. Biochemistry, 2005, 44, 1288-1299.	1.2	162
31	Main-chain Dominated Amyloid Structures Demonstrated by the Effect of High Pressure. Journal of Molecular Biology, 2005, 352, 941-951.	2.0	55
32	Conformational stability of amyloid fibrils of β2 -microglobulin probed by guanidine-hydrochloride-induced unfolding. FEBS Letters, 2004, 576, 313-319.	1.3	62