
Stephen J Klippenstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/621138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current Status of Transition-State Theory. The Journal of Physical Chemistry, 1996, 100, 12771-12800.	2.9	1,795
2	Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 2018, 67, 31-68.	31.2	980
3	Comprehensive H ₂ /O ₂ kinetic model for highâ€pressure combustion. International Journal of Chemical Kinetics, 2012, 44, 444-474.	1.6	682
4	Modeling the Kinetics of Bimolecular Reactions. Chemical Reviews, 2006, 106, 4518-4584.	47.7	533
5	Reformulation and Solution of the Master Equation for Multiple-Well Chemical Reactions. Journal of Physical Chemistry A, 2013, 117, 12146-12154.	2.5	461
6	A KINETIC DATABASE FOR ASTROCHEMISTRY (KIDA). Astrophysical Journal, Supplement Series, 2012, 199, 21.	7.7	436
7	Master Equation Methods in Gas Phase Chemical Kinetics. Journal of Physical Chemistry A, 2006, 110, 10528-10544.	2.5	386
8	DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b. Astrophysical Journal, 2011, 737, 15.	4.5	374
9	The Recombination of Propargyl Radicals and Other Reactions on a C6H6Potential. Journal of Physical Chemistry A, 2003, 107, 7783-7799.	2.5	368
10	Enols Are Common Intermediates in Hydrocarbon Oxidation. Science, 2005, 308, 1887-1889.	12.6	306
11	The role of NNH in NO formation and control. Combustion and Flame, 2011, 158, 774-789.	5.2	304
12	THE 2014 KIDA NETWORK FOR INTERSTELLAR CHEMISTRY. Astrophysical Journal, Supplement Series, 2015, 217, 20.	7.7	291
13	Variational optimizations in the Rice–Ramsperger–Kassel–Marcus theory calculations for unimolecular dissociations with no reverse barrier. Journal of Chemical Physics, 1992, 96, 367-371.	3.0	268
14	Long-range transition state theory. Journal of Chemical Physics, 2005, 122, 194103.	3.0	236
15	Role of O ₂ + QOOH in Low-Temperature Ignition of Propane. 1. Temperature and Pressure Dependent Rate Coefficients. Journal of Physical Chemistry A, 2012, 116, 3325-3346.	2.5	223
16	A Two Transition State Model for Radicalâ^'Molecule Reactions:Â A Case Study of the Addition of OH to C2H4. Journal of Physical Chemistry A, 2005, 109, 6031-6044.	2.5	218
17	From the Multiple-Well Master Equation to Phenomenological Rate Coefficients:  Reactions on a C3H4 Potential Energy Surface. Journal of Physical Chemistry A, 2003, 107, 2680-2692.	2.5	216
18	Chemical Kinetics and Mechanisms of Complex Systems: AÂPerspective on Recent Theoretical Advances. Journal of the American Chemical Society, 2014, 136, 528-546.	13.7	212

#	Article	IF	CITATIONS
19	Predictive theory for the combination kinetics of two alkyl radicals. Physical Chemistry Chemical Physics, 2006, 8, 1133.	2.8	202
20	From theoretical reaction dynamics to chemical modeling of combustion. Proceedings of the Combustion Institute, 2017, 36, 77-111.	3.9	199
21	Kinetics of the Reaction of Methyl Radical with Hydroxyl Radical and Methanol Decompositionâ€. Journal of Physical Chemistry A, 2007, 111, 3932-3950.	2.5	188
22	From the Time-Dependent, Multiple-Well Master Equation to Phenomenological Rate Coefficients. Journal of Physical Chemistry A, 2002, 106, 9267-9277.	2.5	184
23	Predictive Theory for Hydrogen Atomâ^'Hydrocarbon Radical Association Kinetics. Journal of Physical Chemistry A, 2005, 109, 4646-4656.	2.5	176
24	An Efficient Procedure for Evaluating the Number of Available States within a Variably Defined Reaction Coordinate Framework. The Journal of Physical Chemistry, 1994, 98, 11459-11464.	2.9	166
25	Measurements, Theory, and Modeling of OH Formation in Ethyl + O2 and Propyl + O2 Reactions. Journal of Physical Chemistry A, 2003, 107, 4415-4427.	2.5	160
26	Ab initio methods for reactive potential surfaces. Physical Chemistry Chemical Physics, 2007, 9, 4055.	2.8	158
27	Vibrational Spectroscopy and Density Functional Theory of Transition-Metal Ionâ^'Benzene and Dibenzene Complexes in the Gas Phase. Journal of the American Chemical Society, 2004, 126, 10981-10991.	13.7	157
28	High-pressure oxidation of methane. Combustion and Flame, 2016, 172, 349-364.	5.2	157
29	Reaction of Ethylene with Hydroxyl Radicals: A Theoretical Studyâ€. Journal of Physical Chemistry A, 2006, 110, 6960-6970.	2.5	156
30	Exploring the Role of PAHs in the Formation of Soot: Pyrene Dimerization. Journal of Physical Chemistry Letters, 2010, 1, 2962-2967.	4.6	152
31	Uncertainty driven theoretical kinetics studies for CH3OH ignition: HO2+CH3OH and O2+CH3OH. Proceedings of the Combustion Institute, 2011, 33, 351-357.	3.9	149
32	Transition State Theory for Multichannel Addition Reactions:  Multifaceted Dividing Surfaces. Journal of Physical Chemistry A, 2003, 107, 9776-9781.	2.5	147
33	Ab Initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species. Journal of Physical Chemistry A, 2017, 121, 6580-6602.	2.5	144
34	Identification and Chemistry of C4H3and C4H5Isomers in Fuel-Rich Flames. Journal of Physical Chemistry A, 2006, 110, 3670-3678.	2.5	143
35	Predictive a priori pressure-dependent kinetics. Science, 2014, 346, 1212-1215.	12.6	142
36	Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5. Physical Chemistry Chemical Physics, 2007, 9, 4259.	2.8	141

3

#	Article	IF	CITATIONS
37	The H + C2H2(+M) ⇄ C2H3(+M) and H + C2H2(+M) ⇄ C2H5(+M) reacti transition-state theory, and solutions to a two-dimensional master equation. Physical Chemistry Chemical Physics, 2004, 6, 1192-1202.	ons: Electi 2.8	ronic structur 139
38	Rate Constants for the Thermal Decomposition of Ethanol and Its Bimolecular Reactions with OH and D: Reflected Shock Tube and Theoretical Studies. Journal of Physical Chemistry A, 2010, 114, 9425-9439.	2.5	139
39	Variable reaction coordinate transition state theory: Analytic results and application to the C2H3+H→C2H4 reaction. Journal of Chemical Physics, 2003, 118, 5442-5455.	3.0	135
40	Understanding Reactivity at Very Low Temperatures: The Reactions of Oxygen Atoms with Alkenes. Science, 2007, 317, 102-105.	12.6	131
41	Application of unimolecular reaction rate theory for highly flexible transition states to the dissociation of NCNO into NC and NO. Journal of Chemical Physics, 1988, 89, 4761-4770.	3.0	128
42	The Recombination of Propargyl Radicals:Â Solving the Master Equation. Journal of Physical Chemistry A, 2001, 105, 7254-7266.	2.5	127
43	Solution of Some One- and Two-Dimensional Master Equation Models for Thermal Dissociation:  The Dissociation of Methane in the Low-Pressure Limit. Journal of Physical Chemistry A, 2002, 106, 4904-4913.	2.5	127
44	Roaming Radical Kinetics in the Decomposition of Acetaldehyde. Journal of Physical Chemistry A, 2010, 114, 765-777.	2.5	125
45	Simulating the density of organic species in the atmosphere of Titan with a coupled ion-neutral photochemical model. Icarus, 2019, 324, 120-197.	2.5	125
46	The reaction between ethyl and molecular oxygen II: Further analysis. International Journal of Chemical Kinetics, 2001, 33, 654-668.	1.6	124
47	Identification of C5HxIsomers in Fuel-Rich Flames by Photoionization Mass Spectrometry and Electronic Structure Calculations. Journal of Physical Chemistry A, 2006, 110, 4376-4388.	2.5	122
48	Understanding low-temperature first-stage ignition delay: Propane. Combustion and Flame, 2015, 162, 3658-3673.	5.2	122
49	A bond length reaction coordinate for unimolecular reactions. II. Microcanonical and canonical implementations with application to the dissociation of NCNO. Journal of Chemical Physics, 1991, 94, 6469-6482.	3.0	119
50	The spin-forbidden reaction CH(2Î)+N2→HCN+N(4S) revisited. II. Nonadiabatic transition state theory and application. Journal of Chemical Physics, 1999, 110, 9469-9482.	3.0	118
51	Temperature- and pressure-dependent rate coefficients for the HACA pathways from benzene to naphthalene. Proceedings of the Combustion Institute, 2017, 36, 919-926.	3.9	115
52	Synchrotron photoionization measurements of combustion intermediates: Photoionization efficiency and identification of C3H2 isomers. Physical Chemistry Chemical Physics, 2005, 7, 806.	2.8	113
53	Direct Observation of Roaming Radicals in the Thermal Decomposition of Acetaldehyde. Journal of Physical Chemistry A, 2010, 114, 755-764.	2.5	112
54	On the Combination Reactions of Hydrogen Atoms with Resonance-Stabilized Hydrocarbon Radicalsâ€. Journal of Physical Chemistry A, 2007, 111, 3789-3801.	2.5	111

#	Article	IF	CITATIONS
55	Implementation of RRKM theory for highly flexible transition states with a bond length as the reaction coordinate. Chemical Physics Letters, 1990, 170, 71-77.	2.6	109
56	Four-Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared Spectrum, and OH Production. Journal of the American Chemical Society, 2018, 140, 10866-10880.	13.7	109
57	The anharmonic force field and equilibrium molecular structure of ketene. Journal of Chemical Physics, 1995, 102, 8506-8532.	3.0	106
58	A theoretical analysis of the reaction between ethyl and molecular oxygen. Proceedings of the Combustion Institute, 2000, 28, 1479-1486.	3.9	105
59	High pressure rate constants for unimolecular dissociation/free radical recombination: Determination of the quantum correction via quantum Monte Carlo path integration. Journal of Chemical Physics, 1987, 87, 3410-3417.	3.0	104
60	Application of unimolecular reaction rate theory for highly flexible transition states to the dissociation of CH2CO into CH2 and CO. Journal of Chemical Physics, 1989, 91, 2280-2292.	3.0	103
61	Binding Energy of Al(C6H6)+from Analysis of Radiative Association Kinetics. Journal of the American Chemical Society, 1996, 118, 5277-5283.	13.7	102
62	Initial Steps of Aromatic Ring Formation in a Laminar Premixed Fuel-Rich Cyclopentene Flameâ€. Journal of Physical Chemistry A, 2007, 111, 4081-4092.	2.5	102
63	On the formation and decomposition of C7H8. Proceedings of the Combustion Institute, 2007, 31, 221-229.	3.9	101
64	Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes. Accounts of Chemical Research, 2018, 51, 978-985.	15.6	101
65	Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products. Journal of Chemical Physics, 2016, 144, 061102.	3.0	99
66	A theoretical analysis of the reaction between propargyl and molecular oxygen. Faraday Discussions, 2001, 119, 79-100.	3.2	93
67	Reaction Kinetics of CO + HO2→ Products: Ab Initio Transition State Theory Study with Master Equation Modelingâ€. Journal of Physical Chemistry A, 2007, 111, 4031-4042.	2.5	92
68	Theory, measurements, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2. Physical Chemistry Chemical Physics, 2007, 9, 4315.	2.8	92
69	Roaming radicals in the thermal decomposition of dimethyl ether: Experiment and theory. Combustion and Flame, 2011, 158, 618-632.	5.2	92
70	Binding Energies of Ag+ and Cd+ Complexes from Analysis of Radiative Association Kinetics. Journal of Physical Chemistry A, 1997, 101, 3338-3347.	2.5	91
71	A Theoretical Analysis of the Reaction between Vinyl and Acetylene:Â Quantum Chemistry and Solution of the Master Equation. Journal of Physical Chemistry A, 2000, 104, 7525-7536.	2.5	91
72	Interception of Excited Vibrational Quantum States by O ₂ in Atmospheric Association Reactions. Science, 2012, 337, 1066-1069.	12.6	90

#	Article	IF	CITATIONS
73	Binding Energies of Gas-Phase Metal Ions with Pyrrole:  Experimental and Quantum Chemical Results. Journal of Physical Chemistry A, 2000, 104, 3246-3256.	2.5	89
74	Shock Tube and Theory Investigation of Cyclohexane and 1-Hexene Decomposition. Journal of Physical Chemistry A, 2009, 113, 13570-13583.	2.5	88
75	Temperature and Pressure-Dependent Rate Coefficients for the Reaction of Vinyl Radical with Molecular Oxygen. Journal of Physical Chemistry A, 2015, 119, 7766-7779.	2.5	88
76	Theoretical and Experimental Investigation of the Dynamics of the Production of CO from the CH3 + O and CD3 + O Reactions. Journal of Physical Chemistry A, 2001, 105, 8361-8369.	2.5	87
77	Energy-Resolved Photoionization of Alkylperoxy Radicals and the Stability of Their Cations. Journal of the American Chemical Society, 2006, 128, 13559-13567.	13.7	87
78	Theoretical rate coefficients for the reaction of methyl radical with hydroperoxyl radical and for methylhydroperoxide decomposition. Proceedings of the Combustion Institute, 2009, 32, 279-286.	3.9	87
79	Infrared frequency-modulation probing of product formation in alkyl + O2 reactions. Part IV.For Part III see ref. 12. Reactions of propyl and butyl radicals with O2Electronic Supplementary Information available. See http://www.rsc.org/suppdata/fd/b1/b102237g/. Faraday Discussions, 2001, 119, 101-120.	3.2	86
80	The Reaction of Acetylene with Hydroxyl Radicals. Journal of Physical Chemistry A, 2005, 109, 6045-6055.	2.5	86
81	Thermal Decomposition of NH ₂ OH and Subsequent Reactions: Ab Initio Transition State Theory and Reflected Shock Tube Experiments. Journal of Physical Chemistry A, 2009, 113, 10241-10259.	2.5	86
82	Strange Kinetics of the C2H6+ CN Reaction Explainedâ€. Journal of Physical Chemistry A, 2007, 111, 3802-3811.	2.5	85
83	Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry. Nature Chemistry, 2017, 9, 1078-1082.	13.6	85
84	Density functional theory predictions for the binding of transition metal cations to pi systems: from acetylene to coronene and tribenzocyclyne. International Journal of Mass Spectrometry, 2000, 201, 253-267.	1.5	84
85	Reactions between Resonance-Stabilized Radicals: Propargyl + Allyl. Journal of Physical Chemistry A, 2010, 114, 4881-4890.	2.5	84
86	A high level ab initio map and direct statistical treatment of the fragmentation of singlet ketene. Journal of Chemical Physics, 1996, 105, 118-140.	3.0	81
87	H-Abstraction reactions by OH, HO ₂ , O, O ₂ and benzyl radical addition to O ₂ and their implications for kinetic modelling of toluene oxidation. Physical Chemistry Chemical Physics, 2018, 20, 10607-10627.	2.8	80
88	EStokTP: Electronic Structure to Temperature- and Pressure-Dependent Rate Constants—A Code for Automatically Predicting the Thermal Kinetics of Reactions. Journal of Chemical Theory and Computation, 2019, 15, 1122-1145.	5.3	80
89	Theory and Modeling of the Binding in Cationic Transition-Metalâ^'Benzene Complexes. Journal of Physical Chemistry A, 1999, 103, 1094-1103.	2.5	78
90	A Direct Transition State Theory Based Study of Methyl Radical Recombination Kinetics. Journal of Physical Chemistry A, 1999, 103, 9388-9398.	2.5	77

#	Article	IF	CITATIONS
91	Statistical Theory for the Kinetics and Dynamics of Roaming Reactions. Journal of Physical Chemistry A, 2011, 115, 14370-14381.	2.5	76
92	Pressure-dependent rate constants for PAH growth: formation of indene and its conversion to naphthalene. Faraday Discussions, 2016, 195, 637-670.	3.2	76
93	High-pressure oxidation of ethane. Combustion and Flame, 2017, 182, 150-166.	5.2	76
94	A combined theoretical and experimental study of the dissociation of benzene cation. Journal of Chemical Physics, 1993, 98, 243-256.	3.0	75
95	Theoretical rate coefficients for allyl+HO2 and allyloxy decomposition. Proceedings of the Combustion Institute, 2011, 33, 273-282.	3.9	75
96	Theoretical Considerations in the NH2 + NO Reaction. Journal of Physical Chemistry A, 2000, 104, 2061-2069.	2.5	74
97	Pathways and Rate Coefficients for the Decomposition of Vinoxy and Acetyl Radicals. Journal of Physical Chemistry A, 2006, 110, 5772-5781.	2.5	74
98	Dissociation of Propyl Radicals and Other Reactions on a C ₃ H ₇ Potential. Journal of Physical Chemistry A, 2013, 117, 2718-2727.	2.5	74
99	Reactions over Multiple, Interconnected Potential Wells: Unimolecular and Bimolecular Reactions on a C3H5 Potential. Journal of Physical Chemistry A, 2008, 112, 9429-9438.	2.5	73
100	Roaming Radical Pathways for the Decomposition of Alkanes. Journal of Physical Chemistry Letters, 2010, 1, 3016-3020.	4.6	73
101	A quantitative explanation for the apparent anomalous temperature dependence of OH + HO2= H2O + O2 through multi-scale modeling. Proceedings of the Combustion Institute, 2013, 34, 547-555.	3.9	73
102	Determining phenomenological rate coefficients from a time-dependent, multiple-well master equation: "species reduction―at high temperatures. Physical Chemistry Chemical Physics, 2013, 15, 4744.	2.8	73
103	A Two Transition State Model for Radicalâ^'Molecule Reactions:Â Applications to Isomeric Branching in the OHâ^'Isoprene Reaction. Journal of Physical Chemistry A, 2007, 111, 5582-5592.	2.5	71
104	Theory and modeling of ion–molecule radiative association kinetics. Journal of Chemical Physics, 1996, 104, 4502-4516.	3.0	70
105	A combined ab initio and photoionization mass spectrometric study of polyynes in fuel-rich flames. Physical Chemistry Chemical Physics, 2008, 10, 366-374.	2.8	68
106	Exploring formation pathways of aromatic compounds in laboratory-based model flames of aliphatic fuels. Combustion, Explosion and Shock Waves, 2012, 48, 508-515.	0.8	68
107	Theoretical Validation of Chemical Kinetic Mechanisms: Combustion of Methanol. Journal of Physical Chemistry A, 2010, 114, 8286-8301.	2.5	66
108	Formation of NH3 and CH2NH in Titan's upper atmosphere. Faraday Discussions, 2010, 147, 31.	3.2	66

#	Article	IF	CITATIONS
109	Collision Efficiency of Water in the Unimolecular Reaction CH ₄ (+H ₂ O) ⇆ CH ₃ + H (+H ₂ O): One-Dimensional and Two-Dimensional Solutions of the Low-Pressure-Limit Master Equation. Journal of Physical Chemistry A, 2013, 117, 12243-12255.	2.5	65
110	Uncertainty propagation in the derivation of phenomenological rate coefficients from theory: A case study of n-propyl radical oxidation. Proceedings of the Combustion Institute, 2013, 34, 177-185.	3.9	64
111	Dissociation, relaxation, and incubation in the high-temperature pyrolysis of ethane, and a successful RRKM modeling. Proceedings of the Combustion Institute, 2005, 30, 1129-1135.	3.9	63
112	Experimental and Theoretical Investigation of the Self-Reaction of Phenyl Radicals. Journal of Physical Chemistry A, 2010, 114, 8240-8261.	2.5	63
113	Weakly Bound Free Radicals in Combustion: "Prompt―Dissociation of Formyl Radicals and Its Effect on Laminar Flame Speeds. Journal of Physical Chemistry Letters, 2016, 7, 85-89.	4.6	63
114	Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9733-9740.	7.1	63
115	Kinetics of CH + N ₂ Revisited with Multireference Methods. Journal of Physical Chemistry A, 2008, 112, 522-532.	2.5	62
116	Automated computational thermochemistry for butane oxidation: A prelude to predictive automated combustion kinetics. Proceedings of the Combustion Institute, 2019, 37, 363-371.	3.9	62
117	The Addition of Hydrogen Atoms to Diacetylene and the Heats of Formation ofi-C4H3andn-C4H3. Journal of Physical Chemistry A, 2005, 109, 4285-4295.	2.5	61
118	Experimental and theoretical rate constants for CH4 + O2 → CH3 + HO2. Combustion and Flame, 2007, 149, 104-111.	5.2	61
119	Near-threshold H/D exchange in CD3CHO photodissociation. Nature Chemistry, 2011, 3, 443-448.	13.6	60
120	Thermal Dissociation and Roaming Isomerization of Nitromethane: Experiment and Theory. Journal of Physical Chemistry A, 2015, 119, 7872-7893.	2.5	59
121	Experiments and Theory on the Thermal Decomposition of CHCl3and the Reactions of CCl2. Journal of Physical Chemistry A, 1997, 101, 8653-8661.	2.5	58
122	Effect of non-thermal product energy distributions on ketohydroperoxide decomposition kinetics. Proceedings of the Combustion Institute, 2015, 35, 283-290.	3.9	58
123	Shock Tube and Theoretical Studies on the Thermal Decomposition of Propane: Evidence for a Roaming Radical Channel. Journal of Physical Chemistry A, 2011, 115, 3366-3379.	2.5	57
124	Theory and modeling of relevance to prompt-NO formation at high pressure. Combustion and Flame, 2018, 195, 3-17.	5.2	57
125	Pressure-Dependent OH Yields in Alkene + HO ₂ Reactions: A Theoretical Study. Journal of Physical Chemistry A, 2011, 115, 10218-10225.	2.5	56
126	Deep tunneling in the unimolecular decay of CH3CHOO Criegee intermediates to OH radical products. Journal of Chemical Physics, 2016, 145, 234308.	3.0	56

#	Article	IF	CITATIONS
127	Theoretical Kinetics Analysis for ᢠAtom Addition to 1,3-Butadiene and Related Reactions on the ÄŠ ₄ H ₇ Potential Energy Surface. Journal of Physical Chemistry A, 2017, 121, 7433-7445.	2.5	55
128	Reactions of oxygen atoms with hydrocarbon radicals: a priori kinetic predictions for the CH3+O, C2H5+O, and C2H3+O reactions. Proceedings of the Combustion Institute, 2005, 30, 985-993.	3.9	54
129	RAPID ASSOCIATION REACTIONS AT LOW PRESSURE: IMPACT ON THE FORMATION OF HYDROCARBONS ON TITAN. Astrophysical Journal, 2012, 744, 11.	4.5	54
130	Application of unimolecular reaction rate theory for highly flexible transition states to the dissociation of CH2CO into CH2 and CO. II. Photofragment excitation spectra for vibrationallyâ€excited fragments. Journal of Chemical Physics, 1990, 93, 2418-2424.	3.0	53
131	Ab Initio Kinetics for the Decomposition of Hydroxybutyl and Butoxy Radicals of <i>n</i> -Butanol. Journal of Physical Chemistry A, 2013, 117, 1890-1906.	2.5	52
132	Synthesis, Electronic Spectroscopy, and Photochemistry of Methacrolein Oxide: A Four-Carbon Unsaturated Criegee Intermediate from Isoprene Ozonolysis. Journal of the American Chemical Society, 2019, 141, 15058-15069.	13.7	52
133	A kinetic issue in reburning: the fate of HCNO. Combustion and Flame, 2003, 135, 357-362.	5.2	51
134	A theoretical study of the dissociation of NO2. Journal of Chemical Physics, 1993, 99, 3644-3653.	3.0	50
135	Resolving the mystery of prompt CO2: The HCCO+O2 reaction. Proceedings of the Combustion Institute, 2002, 29, 1209-1217.	3.9	50
136	Direct observation of unimolecular decay of CH3CH2CHOO Criegee intermediates to OH radical products. Journal of Chemical Physics, 2016, 145, 044312.	3.0	49
137	Separability of Tight and Roaming Pathways to Molecular Decomposition. Journal of Physical Chemistry A, 2012, 116, 6967-6982.	2.5	48
138	Towards a quantitative understanding of the role of non-Boltzmann reactant distributions in low temperature oxidation. Proceedings of the Combustion Institute, 2015, 35, 205-213.	3.9	48
139	Hydrolysis of Ketene Catalyzed by Formic Acid: Modification of Reaction Mechanism, Energetics, and Kinetics with Organic Acid Catalysis. Journal of Physical Chemistry A, 2015, 119, 4347-4357.	2.5	48
140	High-pressure oxidation of propane. Proceedings of the Combustion Institute, 2019, 37, 461-468.	3.9	48
141	Variational statistical study of the CN+O2 reaction employing ab initio determined properties for the transition state. Journal of Chemical Physics, 1993, 99, 5790-5799.	3.0	46
142	Small ester combustion chemistry: Computational kinetics and experimental study of methyl acetate and ethyl acetate. Proceedings of the Combustion Institute, 2019, 37, 419-428.	3.9	45
143	Comparisons between statistics, dynamics, and experiment for the H+O2→OH+O reaction. Journal of Chemical Physics, 1995, 103, 7287-7298.	3.0	44
144	Temperature Dependence of Two Key Interstellar Reactions of H ₃ ⁺ : O(³ P) + H ₃ ⁺ and CO + H ₃ ⁺ . Journal of Physical Chemistry A, 2010, 114, 278-290.	2.5	44

#	Article	IF	CITATIONS
145	Detailed balance in multiple-well chemical reactions. Physical Chemistry Chemical Physics, 2009, 11, 1128.	2.8	43
146	Unimolecular reaction rate theory for highly flexible transition states: use of conventional coordinates. The Journal of Physical Chemistry, 1988, 92, 3105-3109.	2.9	42
147	Decomposition of acetaldehyde: Experiment and detailed theory. Proceedings of the Combustion Institute, 2007, 31, 167-174.	3.9	42
148	First-principles binary diffusion coefficients for H, H2, and four normal alkanes + N2. Journal of Chemical Physics, 2014, 141, 124313.	3.0	42
149	Theoretical kinetics of O + C2H4. Proceedings of the Combustion Institute, 2017, 36, 219-227.	3.9	42
150	Dimethylamine Addition to Formaldehyde Catalyzed by a Single Water Molecule: A Facile Route for Atmospheric Carbinolamine Formation and Potential Promoter of Aerosol Growth. Journal of Physical Chemistry A, 2016, 120, 1358-1368.	2.5	41
151	Theoretical kinetics predictions for NH2Â+ÂHO2. Combustion and Flame, 2022, 236, 111787.	5.2	41
152	A complete statistical analysis of the reaction between OH and CO. Proceedings of the Combustion Institute, 2005, 30, 945-953.	3.9	40
153	The Effect of Spinâ^'Orbit Splitting on the Association Kinetics of Barrierless Halogen Atomâ^'Hydrocarbon Radical Reactions. Journal of Physical Chemistry A, 2010, 114, 5759-5768.	2.5	40
154	Propargyl + O ₂ Reaction in Helium Droplets: Entrance Channel Barrier or Not?. Journal of Physical Chemistry A, 2013, 117, 13626-13635.	2.5	39
155	Intramolecular dynamics. I. Curvilinear normal modes, local modes, molecular anharmonic Hamiltonian, and application to benzene. Journal of Chemical Physics, 1991, 94, 7319-7334.	3.0	38
156	Measurements and Modeling of HO2Formation in the Reactions ofn-C3H7andi-C3H7Radicals with O2â€. Journal of Physical Chemistry B, 2005, 109, 8374-8387.	2.6	38
157	A shock-tube and theory study of the dissociation of acetone and subsequent recombination of methyl radicals. Proceedings of the Combustion Institute, 2009, 32, 123-130.	3.9	38
158	Unconventional Peroxy Chemistry in Alcohol Oxidation: The Water Elimination Pathway. Journal of Physical Chemistry Letters, 2013, 4, 350-354.	4.6	38
159	Rate Constant and Branching Fraction for the NH ₂ + NO ₂ Reaction. Journal of Physical Chemistry A, 2013, 117, 9011-9022.	2.5	37
160	Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions. Journal of Physical Chemistry A, 2015, 119, 7095-7115.	2.5	37
161	Unimolecular reaction rate theory for highly flexible transition states. 2. Conventional coordinate formulas for the various possible fragment combinations: miscellaneous topics. The Journal of Physical Chemistry, 1988, 92, 5412-5417.	2.9	36
162	Radiative Association of NO+with 3-Pentanone:Â Rate, Binding Energy, and Temperature Dependence. Journal of the American Chemical Society, 1996, 118, 5462-5468.	13.7	36

#	Article	IF	CITATIONS
163	Ramifications of including non-equilibrium effects for HCO in flame chemistry. Proceedings of the Combustion Institute, 2017, 36, 525-532.	3.9	36
164	Nascent energy distribution of the Criegee intermediate CH2OO from direct dynamics calculations of primary ozonide dissociation. Journal of Chemical Physics, 2018, 148, 174306.	3.0	36
165	Kinetics of Propargyl Radical Dissociation. Journal of Physical Chemistry A, 2015, 119, 7780-7791.	2.5	35
166	Variational calculation of the rate of dissociation of ethenone into methylene and carbon monoxide on an ab initio determined potential energy surface. The Journal of Physical Chemistry, 1991, 95, 9882-9889.	2.9	34
167	Shock Tube Explorations of Roaming Radical Mechanisms: The Decompositions of Isobutane and Neopentane. Journal of Physical Chemistry A, 2012, 116, 5981-5989.	2.5	34
168	Tunneling effects in the unimolecular decay of (CH3)2COO Criegee intermediates to OH radical products. Journal of Chemical Physics, 2017, 146, 134307.	3.0	34
169	Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde. Journal of Physical Chemistry A, 2015, 119, 7724-7733.	2.5	33
170	Variable reaction coordinate direct RRKM theory. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 423-437.	0.9	32
171	Time-resolved measurements of OH and HO2 product formation in pulsed-photolytic chlorine atom initiated oxidation of neopentane. Physical Chemistry Chemical Physics, 2003, 5, 1584-1592.	2.8	32
172	Channel Specific Rate Constants Relevant to the Thermal Decomposition of Disilane. Journal of Physical Chemistry A, 2005, 109, 4911-4920.	2.5	32
173	Global uncertainty analysis for RRKM/master equation based kinetic predictions: A case study of ethanol decomposition. Combustion and Flame, 2015, 162, 3427-3436.	5.2	32
174	New Insights into Low-Temperature Oxidation of Propane from Synchrotron Photoionization Mass Spectrometry and Multiscale Informatics Modeling. Journal of Physical Chemistry A, 2015, 119, 7116-7129.	2.5	32
175	Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12372-12377.	7.1	32
176	Infrared Spectral Properties of the Naphthalene Cation: Radiative Cooling Kinetics Experiments and Density Functional Calculations. The Journal of Physical Chemistry, 1995, 99, 12115-12124.	2.9	31
177	Some Observations Concerning Detailed Balance in Association/Dissociation Reactions. Journal of Physical Chemistry A, 2004, 108, 8296-8306.	2.5	31
178	Measurements and Modeling of DO2Formation in the Reactions of C2D5and C3D7Radicals with O2â€. Journal of Physical Chemistry A, 2007, 111, 4015-4030.	2.5	31
179	Performance of the Spin-Flip and Multireference Methods for Bond Breaking in Hydrocarbons:  A Benchmark Study. Journal of Physical Chemistry A, 2007, 111, 13264-13271.	2.5	31
180	Watching a hydroperoxyalkyl radical (•QOOH) dissociate. Science, 2021, 373, 679-682.	12.6	31

#	Article	IF	CITATIONS
181	Thermal Decomposition of CF3and the Reaction of CF2+ OH → CF2O + H. Journal of Physical Chemistry A, 2008, 112, 31-37.	2.5	30
182	The role of radical + fuel-radical well-skipping reactions in ethanol and methylformate low-pressure flames. Proceedings of the Combustion Institute, 2015, 35, 447-455.	3.9	30
183	Comment on "When Rate Constants Are Not Enough― Journal of Physical Chemistry A, 2016, 120, 306-312.	2.5	30
184	A theoretical study of the kinetics of C2H3+H. Physical Chemistry Chemical Physics, 1999, 1, 989-997.	2.8	28
185	Temperature Dependence and Deuterium Kinetic Isotope Effects in the CH (CD) + C2H4(C2D4) Reaction between 295 and 726 K. Journal of Physical Chemistry A, 2001, 105, 5393-5401.	2.5	28
186	A theoretical analysis of the CH3+H reaction: isotope effects, the high-pressure limit, and transition state recrossing. Proceedings of the Combustion Institute, 2002, 29, 1229-1236.	3.9	28
187	Pressure-dependent branching in the reaction of 1 CH 2 with C 2 H 4 and other reactions on the C 3 H 6 potential energy surface. Proceedings of the Combustion Institute, 2015, 35, 223-230.	3.9	28
188	Automated theoretical chemical kinetics: Predicting the kinetics for the initial stages of pyrolysis. Proceedings of the Combustion Institute, 2021, 38, 375-384.	3.9	28
189	Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm. Journal of the American Chemical Society, 2021, 143, 3124-3142.	13.7	28
190	Theoretical kinetic estimates for the recombination of hydrogen atoms with propargyl and allyl radicals. Proceedings of the Combustion Institute, 2000, 28, 1503-1509.	3.9	27
191	A direct transition state theory based analysis of the branching in NH2 + NO. Faraday Discussions, 2001, 119, 207-222.	3.2	27
192	Ab initio kinetics for pyrolysis and combustion systems. Computer Aided Chemical Engineering, 2019, , 115-167.	0.5	27
193	Auxiliary Induced .rhoStereocontrol in Acetaloxyalkyl Radical Addition Reactions. Journal of the American Chemical Society, 1995, 117, 4183-4184.	13.7	26
194	Development of an Effective Chiral Auxiliary for Hydroxyalkyl Radicals. Journal of Organic Chemistry, 2002, 67, 6195-6209.	3.2	26
195	Secondary Kinetics of Methanol Decomposition:  Theoretical Rate Coefficients for ³ CH ₂ + OH, ³ CH ₂ + ³ CH ₂ , and ³ CH ₂ + CH ₃ . Journal of Physical Chemistry A, 2007, 111, 8699-8707.	2.5	26
196	Low Temperature Kinetics of the First Steps of Water Cluster Formation. Physical Review Letters, 2016, 116, 113401.	7.8	26
197	Kinetics of the reaction of vinyl radicals with NO: Ab initio theory, master equation predictions, and laser absorption measurements. Physical Chemistry Chemical Physics, 2004, 6, 2216-2223.	2.8	25
198	Combustion Chemistry: Important Features of the C ₃ H ₅ Potential Energy Surface, Including Allyl Radical, Propargyl + H ₂ , Allene + H, and Eight Transition States. Journal of Physical Chemistry A, 2011, 115, 14209-14214.	2.5	25

#	Article	IF	CITATIONS
199	Comparison of variational Rice–Ramsperger–Kassel–Marcus theory with quantum scattering theory for the He+H+2 →HeH++H reaction. Journal of Chemical Physics, 1992, 96, 8164-8170.	3.0	24
200	Kinetic Isotope Effects and Variable Reaction Coordinates in Barrierless Recombination Reactions. Journal of Physical Chemistry A, 2001, 105, 8567-8578.	2.5	24
201	Geometric Investigation of Association/Dissociation Kinetics with an Application to the Master Equation for CH3 + CH3 ↔ C2H6. Journal of Physical Chemistry A, 2002, 106, 5860-5879.	2.5	24
202	Sterically promoted zirconium–phosphorus π-bonding: structural investigations of [Cp2Zr(Cl){P(H)Dmp}] and [Cp2Zr{P(H)Dmp}2] (Dmp=2,6-Mes2C6H3). Inorganica Chimica Acta, 2000, 297, 181-190.	2.4	23
203	Kinetics and Product Branching Ratios of the Reaction of ¹ CH ₂ with H ₂ and D ₂ . Journal of Physical Chemistry A, 2008, 112, 9575-9583.	2.5	23
204	HÈ®2Â+ÂHÈ®2: High level theory and the role of singlet channels. Combustion and Flame, 2022, 243, 111975.	5.2	23
205	A first principles theoretical determination of the rate constant for the dissociation of singlet ketene. Journal of Chemical Physics, 1994, 101, 9198-9201.	3.0	22
206	Accurate Anharmonic Zero-Point Energies for Some Combustion-Related Species from Diffusion Monte Carlo. Journal of Physical Chemistry A, 2017, 121, 4334-4340.	2.5	22
207	Predictive Theory for the Addition and Insertion Kinetics of ¹ CH ₂ Reacting with Unsaturated Hydrocarbons. Journal of Physical Chemistry A, 2013, 117, 12677-12692.	2.5	21
208	Comparison of multireference configuration interaction potential energy surfaces for HÂ+ÂO2Â→ÂHO2: the effect of internal contraction. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	21
209	Pressure dependent low temperature kinetics for CN + CH ₃ CN: competition between chemical reaction and van der Waals complex formation. Physical Chemistry Chemical Physics, 2016, 18, 15118-15132.	2.8	21
210	Nonthermal rate constants for CH4* + X → CH3 + HX, X = H, O, OH, and O2. Journal of Chemical Physics, 2019, 150, 114112.	3.0	21
211	A semiclassical model for orientation effects in electron transfer reactions. Journal of Chemical Physics, 1986, 84, 3089-3098.	3.0	20
212	Product Formation in the Cl-Initiated Oxidation of Cyclopropane. Journal of Physical Chemistry A, 2003, 107, 1992-2002.	2.5	20
213	Oxidation pathways in the reaction of diacetylene with OH radicals. Proceedings of the Combustion Institute, 2007, 31, 185-192.	3.9	20
214	Low Temperature Rate Coefficients for the Reaction CN + HC ₃ N. Journal of Physical Chemistry A, 2013, 117, 12155-12164.	2.5	20
215	Recombination of aromatic radicals with molecular oxygen. Proceedings of the Combustion Institute, 2017, 36, 169-177.	3.9	20
216	A combined quantum chemical and transition state theory study of the C2H+2+CH4 reaction dynamics. Journal of Chemical Physics, 1996, 104, 5437-5445.	3.0	19

#	Article	IF	CITATIONS
217	Binding energies of chromium cations with fluorobenzenes from radiative association kinetics. International Journal of Mass Spectrometry, 1999, 185-187, 913-923.	1.5	19
218	Trajectory simulations for unimolecular dissociations with application to the dissociation of NCNO. Journal of Chemical Physics, 1994, 101, 1996-2005.	3.0	18
219	Temperature Dependence of Radiative Association Rates. Journal of Physical Chemistry A, 1998, 102, 8865-8870.	2.5	18
220	Angular momentum conservation in the O + OH ? O2 + H reaction. International Journal of Chemical Kinetics, 1999, 31, 753-756.	1.6	18
221	Anab initiomolecular dynamics study of S0 ketene fragmentation. Journal of Chemical Physics, 2001, 115, 2134-2145.	3.0	18
222	Reflected Shock Tube and Theoretical Studies of High-Temperature Rate Constants for OH + CF3H ⇆ CF3+ H2O and CF3+ OH → Productsâ€. Journal of Physical Chemistry A, 2007, 111, 6822-6831.	2.5	18
223	A CROSSED MOLECULAR BEAMS STUDY ON THE FORMATION OF THE EXOTIC CYANOETHYNYL RADICAL IN TITAN'S ATMOSPHERE. Astrophysical Journal, 2009, 701, 1797-1803.	4.5	18
224	Ab initio kinetics for the decomposition of monomethylhydrazine (CH3NHNH2). Proceedings of the Combustion Institute, 2011, 33, 425-432.	3.9	18
225	Time-Resolved Kinetic Chirped-Pulse Rotational Spectroscopy in a Room-Temperature Flow Reactor. Journal of Physical Chemistry Letters, 2017, 8, 6180-6188.	4.6	18
226	Kinetics of the H+NCO reaction. Proceedings of the Combustion Institute, 2009, 32, 149-155.	3.9	17
227	Experimental and theoretical studies of the doubly substituted methyl-ethyl Criegee intermediate: Infrared action spectroscopy and unimolecular decay to OH radical products. Journal of Chemical Physics 2020, 152, 094301 Theoretical Rinetics for the decomposition of iso-butanol and related <mml:math< td=""><td>3.0</td><td>17</td></mml:math<>	3.0	17
228	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si14.gif" overflow="scroll"> < mml:mrow> < mml:msub> < mml:mrow> < mml:mo stretchy="false"> (< mml:msub> < mml:mrow> < mml:mtext> CH < /mml:mtext> < /mml:mrow> < mml:mrov	v> ²mml:n	וח> ¹⁶
229	accent="true"> <mml:mrow><mml:mtext>C</mml:mtext></mml:mrow> <mml:mrow><m. of<br="" proceedings="">Low-temperature oxidation of diethyl ether: Reactions of hot radicals across coupled potential energy surfaces. Proceedings of the Combustion Institute, 2021, 38, 671-679.</m.></mml:mrow>	3.9	16
230	Functionalized Hydroperoxide Formation from the Reaction of Methacrolein-Oxide, an Isoprene-Derived Criegee Intermediate, with Formic Acid: Experiment and Theory. Molecules, 2021, 26, 3058.	3.8	16
231	Non-Boltzmann Effects in Chain Branching and Pathway Branching for Diethyl Ether Oxidation. Energy & Fuels, 2021, 35, 17890-17908.	5.1	16
232	Low- and intermediate-temperature oxidation of dimethyl ether up to 100 atm in a supercritical pressure jet-stirred reactor. Combustion and Flame, 2022, 243, 112059.	5.2	16
233	A Theoretical and Experimental Study of the CN + NO Association Reaction. Journal of Physical Chemistry A, 1998, 102, 6973-6980.	2.5	15
234	Photodissociation dynamics of dicyclopropyl ketone at 193 nm: Isomerization of the cyclopropyl ligand. Journal of Chemical Physics, 2003, 119, 7222-7236.	3.0	15

#	Article	IF	CITATIONS
235	Direct Measurement and Theoretical Calculation of the Rate Coefficient for Cl + CH3in the Range fromT= 202â^'298 K. Journal of Physical Chemistry A, 2007, 111, 1015-1023.	2.5	15
236	Anharmonic Rovibrational Partition Functions for Fluxional Species at High Temperatures via Monte Carlo Phase Space Integrals. Journal of Physical Chemistry A, 2018, 122, 1727-1740.	2.5	15
237	Kinetics of 1-butyl and 2-butyl radical reactions with molecular oxygen: Experiment and theory. Proceedings of the Combustion Institute, 2019, 37, 291-298.	3.9	15
238	Termolecular chemistry facilitated by radical-radical recombinations and its impact on flame speed predictions. Proceedings of the Combustion Institute, 2021, 38, 515-522.	3.9	15
239	A theoretical analysis of the reaction of H with C2H5. Proceedings of the Combustion Institute, 1998, 27, 151-157.	0.3	13
240	An experimental and theoretical high temperature kinetic study of the thermal unimolecular dissociation of fluoroethane. Physical Chemistry Chemical Physics, 2008, 10, 6266.	2.8	13
241	Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: experiment and theory. Physical Chemistry Chemical Physics, 2020, 22, 26796-26805.	2.8	13
242	Application of artificial intelligence methods to intramolecular dynamics calculations. Chemical Physics Letters, 1988, 146, 7-12.	2.6	12
243	RRKM Theory and Its Implementation. Comprehensive Chemical Kinetics, 2003, , 55-103.	2.3	11
244	Photodissociation transition states characterized by chirped pulse millimeter wave spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 146-151.	7.1	11
245	Diastereomers and Low-Temperature Oxidation. Journal of Physical Chemistry A, 2021, 125, 8064-8073.	2.5	11
246	A test of two approximate twoâ€state treatments for the dynamics of Hâ€atom transfers between two heavy particles. Journal of Chemical Physics, 1986, 85, 1924-1930.	3.0	10
247	D-Atom Products in Predissociation of CD ₂ CD ₂ OH from the 202â^215 nm Photodissociation of 2-Bromoethanol. Journal of Physical Chemistry A, 2010, 114, 5453-5461.	2.5	10
248	Insights into the role of polycyclic aromatic hydrocarbon condensation in haze formation in Jupiter's atmosphere. Astronomy and Astrophysics, 2011, 532, A40.	5.1	10
249	A Summary of "A Direct Transition State Theory Based Study of Methyl Radical Recombination Kinetics― Journal of Physical Chemistry A, 2000, 104, 2351-2354.	2.5	9
250	The Vinyl + NO Reaction:Â Determining the Products with Time-Resolved Fourier Transform Spectroscopy. Journal of Physical Chemistry A, 2005, 109, 4921-4929.	2.5	9
251	Comment on "Automatic estimation of pressure-dependent rate coefficients―(J. W. Allen, C. F.) Tj ETQq1 1 Physics, 2012, 14, 8431.	0.784314 2.8	rgBT /Overlo 8
252	Reaction Profiles and Kinetics for Radical–Radical Hydrogen Abstraction via Multireference Coupled Cluster Theory. Journal of Chemical Theory and Computation, 2020, 16, 1511-1525.	5.3	8

#	Article	IF	CITATIONS
253	Infrared spectroscopic signature of a hydroperoxyalkyl radical (•QOOH). Journal of Chemical Physics, 2022, 156, 014301.	3.0	8
254	Iteratively determined effective Hamiltonians for the adiabatically reduced coupled equations approach to intramolecular dynamics calculations. Journal of Chemical Physics, 1986, 85, 5019-5026.	3.0	7
255	Effects of New Ab Initio Rate Coefficients on Predictions of Species Formed during <i>n</i> -Butanol Ignition and Pyrolysis. Journal of Physical Chemistry A, 2015, 119, 543-551.	2.5	7
256	Comparison of variational RRKM theory with quantum scattering theory for the Ne+H+2→NeH++H reaction. Chemical Physics Letters, 1992, 195, 513-517.	2.6	6
257	The fragmentation pattern of 1,4-dioxane ion. International Journal of Mass Spectrometry and Ion Processes, 1993, 128, 21-30.	1.8	6
258	Theory of Low Temperature Gas-Phase Reactions. , 2008, , 175-229.		6
259	First-Principles Chemical Kinetic Modeling of Methyl <i>trans</i> -3-Hexenoate Epoxidation by HO ₂ . Journal of Physical Chemistry A, 2017, 121, 1909-1915.	2.5	6
260	Theoretical investigation of intersystem crossing in the cyanonitrene molecule, 1NCN →â€^3NCN. Journal of Chemical Physics, 2017, 147, 084310.	3.0	6
261	Transition-State Theory Based Modeling of the Dynamics of the O+(4S) + CO2 Reaction. Journal of Physical Chemistry A, 1998, 102, 9811-9818.	2.5	5
262	Ab initio Variational Transition State Theory and Master Equation Study of the Reaction (OH) ₃ SiOCH ₂ + CH ₃ ⇌ (OH) ₃ SiOC _{2Zeitschrift Fur Physikalische Chemie, 2015, 229, 691-708.}	ub 2:1 8< sub	>5æ/sub>.
263	Rapid Allylic 1,6 H-Atom Transfer in an Unsaturated Criegee Intermediate. Journal of the American Chemical Society, 2022, 144, 5945-5955.	13.7	5
264	Entanglement Effect and Angular Momentum Conservation in a Nonseparable Tunneling Treatment. Journal of Chemical Theory and Computation, 2021, 17, 3863-3885.	5.3	4
265	Dramatic Conformer-Dependent Reactivity of the Acetaldehyde Oxide Criegee Intermediate with Dimethylamine <i>Via</i> a 1,2-Insertion Mechanism. Journal of Physical Chemistry A, 2022, 126, 710-719.	2.5	4
266	Secondary channels in the thermal decomposition of monomethylhydrazine (CH3NHNH2). RSC Advances, 2014, 4, 62951-62964.	3.6	3
267	Comment on "A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states―[]. Chem. Phys. 142, 124312 (2015)]. Journal of Chemical Physics, 2015, 143, 167101.	3.0	3
268	Long-Range Interaction Potential of Open Shell Atoms with Neutral Molecules : Application to the Calculation of the Rate Constant for the C2H(2Σ+)+O(3P) Reaction. Proceedings of the International Astronomical Union, 2011, 7, 372-382.	0.0	2
269	A Tribute to Lawrence B. Harding, Joe V. Michael, and Albert F. Wagner for Their 100 Years of Combustion Kinetics Studies at Argonne. Journal of Physical Chemistry A, 2015, 119, 7075-7077.	2.5	2
270	Propane clusters in Titan's lower atmosphere: insights from a combined theory/laboratory study. Monthly Notices of the Royal Astronomical Society, 2019, 488, 676-684.	4.4	2

#	Article	IF	CITATIONS
271	TRANSITION STATES IN BARRIERLESS REACTIONS. Advanced Series in Physical Chemistry, 1996, , 120-163.	1.5	2
272	Energy-resolved and time-dependent unimolecular dissociation of hydroperoxyalkyl radicals (˙QOOH). Faraday Discussions, 0, 238, 575-588.	3.2	2
273	Insights into the condensation of PAHsin the envelope of IRC +10216. EAS Publications Series, 2011, 46, 191-199.	0.3	1
274	Angular momentum conservation in the O + OH ↔ O2 + H reaction. , 1999, 31, 753.		1
275	Development of an Effective Chiral Auxiliary for Hydroxylalkyl Radicals ChemInform, 2003, 34, no.	0.0	0
276	Tribute to James A. Miller. Journal of Physical Chemistry A, 2007, 111, 3673-3675.	2.5	0