
Sebastian Molin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6211041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persistent Bacterial Infections, Antibiotic Treatment Failure, and Microbial Adaptive Evolution. Antibiotics, 2022, 11, 419.	3.7	11
2	Polymicrobial infections can select against Pseudomonas aeruginosa mutators because of quorum-sensing trade-offs. Nature Ecology and Evolution, 2022, 6, 979-988.	7.8	10
3	Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nature Reviews Microbiology, 2021, 19, 331-342.	28.6	213
4	Omics-based tracking of <i>Pseudomonas aeruginosa</i> persistence in "eradicated―cystic fibrosis patients. European Respiratory Journal, 2021, 57, 2000512.	6.7	20
5	Compensatory evolution of Pseudomonas aeruginosa's slow growth phenotype suggests mechanisms of adaptation in cystic fibrosis. Nature Communications, 2021, 12, 3186.	12.8	33
6	Enhanced Eradication of Mucinâ€Embedded Bacterial Biofilm by Locally Delivered Antibiotics in Functionalized Microcontainers. Macromolecular Bioscience, 2021, 21, 2100150.	4.1	3
7	Highâ€ŧhroughput dilutionâ€based growth method enables timeâ€resolved exoâ€metabolomics of <i>Pseudomonas putida</i> and <i>Pseudomonas aeruginosa</i> . Microbial Biotechnology, 2021, 14, 2214-2226.	4.2	14
8	Adaptive Interactions of Achromobacter spp. with Pseudomonas aeruginosa in Cystic Fibrosis Chronic Lung Co-Infection. Pathogens, 2021, 10, 978.	2.8	8
9	Bacterial Cell Cultures in a Lab-on-a-Disc: A Simple and Versatile Tool for Quantification of Antibiotic Treatment Efficacy. Analytical Chemistry, 2020, 92, 13871-13879.	6.5	9
10	Electrochemical Detection of Pyocyanin as a Biomarker for Pseudomonas aeruginosa: A Focused Review. Sensors, 2020, 20, 5218.	3.8	54
11	Gene Loss and Acquisition in Lineages of Pseudomonas aeruginosa Evolving in Cystic Fibrosis Patient Airways. MBio, 2020, 11, .	4.1	31
12	Nanograss sensor for selective detection of Pseudomonas aeruginosa by pyocyanin identification in airway samples. Analytical Biochemistry, 2020, 593, 113586.	2.4	22
13	Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiology Reviews, 2020, 44, 171-188.	8.6	154
14	Microcontainer Delivery of Antibiotic Improves Treatment of <i>Pseudomonas aeruginosa</i> Biofilms. Advanced Healthcare Materials, 2020, 9, e1901779.	7.6	17
15	Antibiotic resistance in Pseudomonas aeruginosa and adaptation to complex dynamic environments. Microbial Genomics, 2020, 6, .	2.0	14
16	Bacterial persisters in long-term infection: Emergence and fitness in a complex host environment. PLoS Pathogens, 2020, 16, e1009112.	4.7	53
17	Filamentous bacteriophages are associated with chronic <i>Pseudomonas</i> lung infections and antibiotic resistance in cystic fibrosis. Science Translational Medicine, 2019, 11, .	12.4	80
18	Evolutionary highways to persistent bacterial infection. Nature Communications, 2019, 10, 629.	12.8	89

#	Article	IF	CITATIONS
19	Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa. MBio, 2018, 9, .	4.1	59
20	High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs. Nature Communications, 2018, 9, 3459.	12.8	88
21	Mutations causing low level antibiotic resistance ensure bacterial survival in antibiotic-treated hosts. Scientific Reports, 2018, 8, 12512.	3.3	56
22	Paper-based sensors for rapid detection of virulence factor produced by Pseudomonas aeruginosa. PLoS ONE, 2018, 13, e0194157.	2.5	43
23	Is genotyping of single isolates sufficient for population structure analysis of Pseudomonas aeruginosa in cystic fibrosis airways?. BMC Genomics, 2016, 17, 589.	2.8	16
24	A Rhizobium leguminosarum CHDL- (Cadherin-Like-) Lectin Participates in Assembly and Remodeling of the Biofilm Matrix. Frontiers in Microbiology, 2016, 7, 1608.	3.5	17
25	Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry. Sensors, 2016, 16, 408.	3.8	67
26	Electrochemical sensing of biomarker for diagnostics of bacteria-specific infections. Nanomedicine, 2016, 11, 2185-2195.	3.3	49
27	The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions. Nature Communications, 2016, 7, 13002.	12.8	106
28	Bacterial evolution in PCD and CF patients follows the same mutational steps. Scientific Reports, 2016, 6, 28732.	3.3	38
29	Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa. International Journal of Antimicrobial Agents, 2016, 47, 48-55.	2.5	75
30	Within-host microevolution of Pseudomonas aeruginosa in Italian cystic fibrosis patients. BMC Microbiology, 2015, 15, 218.	3.3	62
31	Development of Spatial Distribution Patterns by Biofilm Cells. Applied and Environmental Microbiology, 2015, 81, 6120-6128.	3.1	30
32	Evolutionary insight from whole-genome sequencing ofPseudomonas aeruginosafrom cystic fibrosis patients. Future Microbiology, 2015, 10, 599-611.	2.0	42
33	Diversity of metabolic profiles of cystic fibrosis Pseudomonas aeruginosa during the early stages of lung infection. Microbiology (United Kingdom), 2015, 161, 1447-1462.	1.8	27
34	Long-term social dynamics drive loss of function in pathogenic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10756-10761.	7.1	155
35	Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nature Genetics, 2015, 47, 57-64.	21.4	516
36	Coexistence and Within-Host Evolution of Diversified Lineages of Hypermutable Pseudomonas aeruginosa in Long-term Cystic Fibrosis Infections. PLoS Genetics, 2014, 10, e1004651.	3.5	148

#	Article	IF	CITATIONS
37	Expression of antisense small RNAs in response to stress in Pseudomonas aeruginosa. BMC Genomics, 2014, 15, 783.	2.8	31
38	Loss of Social Behaviours in Populations of Pseudomonas aeruginosa Infecting Lungs of Patients with Cystic Fibrosis. PLoS ONE, 2014, 9, e83124.	2.5	77
39	Within-Host Evolution of Pseudomonas aeruginosa Reveals Adaptation toward Iron Acquisition from Hemoglobin. MBio, 2014, 5, e00966-14.	4.1	186
40	Environmental Heterogeneity Drives Within-Host Diversification and Evolution of Pseudomonas aeruginosa. MBio, 2014, 5, e01592-14.	4.1	153
41	Applying insights from biofilm biology to drug development — can a new approach be developed?. Nature Reviews Drug Discovery, 2013, 12, 791-808.	46.4	421
42	Archetypal analysis of diverse Pseudomonas aeruginosatranscriptomes reveals adaptation in cystic fibrosis airways. BMC Bioinformatics, 2013, 14, 279.	2.6	42
43	Pseudomonas aeruginosa Adaptation to Lungs of Cystic Fibrosis Patients Leads to Lowered Resistance to Phage and Protist Enemies. PLoS ONE, 2013, 8, e75380.	2.5	36
44	Genome Analysis of a Transmissible Lineage of Pseudomonas aeruginosa Reveals Pathoadaptive Mutations and Distinct Evolutionary Paths of Hypermutators. PLoS Genetics, 2013, 9, e1003741.	3.5	191
45	Evolution and diversification of <i>Pseudomonas aeruginosa</i> in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection. ISME Journal, 2012, 6, 31-45.	9.8	184
46	Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nature Reviews Microbiology, 2012, 10, 841-851.	28.6	635
47	Deletion and acquisition of genomic content during early stage adaptation of <i>Pseudomonas aeruginosa</i> to a human host environment. Environmental Microbiology, 2012, 14, 2200-2211.	3.8	88
48	Evolution and Adaptation in Pseudomonas aeruginosa Biofilms Driven by Mismatch Repair System-Deficient Mutators. PLoS ONE, 2011, 6, e27842.	2.5	53
49	The clinical impact of bacterial biofilms. International Journal of Oral Science, 2011, 3, 55-65.	8.6	663
50	Bacterial adaptation during chronic infection revealed by independent component analysis of transcriptomic data. BMC Microbiology, 2011, 11, 184.	3.3	20
51	Selection of hyperadherent mutants in Pseudomonas putida biofilms. Microbiology (United Kingdom), 2011, 157, 2257-2265.	1.8	13
52	A Mig-14-like protein (PA5003) affects antimicrobial peptide recognition in Pseudomonas aeruginosa. Microbiology (United Kingdom), 2011, 157, 2647-2657.	1.8	20
53	Evolutionary dynamics of bacteria in a human host environment. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7481-7486.	7.1	327

54 Pseudomonas aeruginosa Biofilms in the Lungs of Cystic Fibrosis Patients. , 2011, , 167-184.

3

#	Article	IF	CITATIONS
55	Early adaptive developments of <i>Pseudomonas aeruginosa</i> after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. Environmental Microbiology, 2010, 12, 1643-1658.	3.8	124
56	In Situ Growth Rates and Biofilm Development of <i>Pseudomonas aeruginosa</i> Populations in Chronic Lung Infections. Journal of Bacteriology, 2008, 190, 2767-2776.	2.2	201
57	Molecular Epidemiology and Dynamics of Pseudomonas aeruginosa Populations in Lungs of Cystic Fibrosis Patients. Infection and Immunity, 2007, 75, 2214-2224.	2.2	220
58	Differentiation and Distribution of Colistin- and Sodium Dodecyl Sulfate-Tolerant Cells in Pseudomonas aeruginosa Biofilms. Journal of Bacteriology, 2007, 189, 28-37.	2.2	170
59	Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 171-176.	7.1	401
60	Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiology (United Kingdom), 2006, 152, 2909-2918.	1.8	158
61	Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiology Letters, 2006, 149, 77-83.	1.8	89
62	Meningococcal biofilm formation: structure, development and phenotypes in a standardized continuous flow system. Molecular Microbiology, 2006, 62, 1292-1309.	2.5	49
63	In Vitro Biofilm Formation of Commensal and Pathogenic Escherichia coli Strains: Impact of Environmental and Genetic Factors. Journal of Bacteriology, 2006, 188, 3572-3581.	2.2	182
64	Synergistic Effects in Mixed Escherichia coli Biofilms: Conjugative Plasmid Transfer Drives Biofilm Expansion. Journal of Bacteriology, 2006, 188, 3582-3588.	2.2	124
65	Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environmental Microbiology, 2005, 7, 894-904.	3.8	233
66	Novel Mouse Model of Chronic Pseudomonas aeruginosa Lung Infection Mimicking Cystic Fibrosis. Infection and Immunity, 2005, 73, 2504-2514.	2.2	158
67	Identification of Bacteria in Biofilm and Bulk Water Samples from a Nonchlorinated Model Drinking Water Distribution System: Detection of a Large Nitrite-Oxidizing Population Associated with Nitrospira spp. Applied and Environmental Microbiology, 2005, 71, 8611-8617.	3.1	145
68	Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology (United Kingdom), 2005, 151, 373-383.	1.8	451
69	Elucidation of the Antibacterial Mechanism of the Curvularia Haloperoxidase System by DNA Microarray Profiling. Applied and Environmental Microbiology, 2004, 70, 1749-1757.	3.1	13
70	Stratified Growth in Pseudomonas aeruginosa Biofilms. Applied and Environmental Microbiology, 2004, 70, 6188-6196.	3.1	322
71	Combined use of different Gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa. FEMS Microbiology Ecology, 2004, 48, 139-148.	2.7	61
72	Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. Journal of Medical Microbiology, 2004, 53, 679-690.	1.8	154

#	Article	IF	CITATIONS
73	Microbial Pathogenesis and Biofilm Development. , 2004, 12, 114-131.		17
74	The Biofilm Lifestyle of Pseudomonads. , 2004, , 547-571.		12
75	Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO Journal, 2003, 22, 3803-3815.	7.8	1,205
76	Influence of food preservation parameters and associated microbiota on production rate, profile and stability of acylated homoserine lactones from food-derived Enterobacteriaceae. International Journal of Food Microbiology, 2003, 84, 145-156.	4.7	30
77	Cene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Current Opinion in Biotechnology, 2003, 14, 255-261.	6.6	563
78	Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Molecular Microbiology, 2003, 50, 61-68.	2.5	463
79	Clobal impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Molecular Microbiology, 2003, 51, 659-674.	2.5	420
80	Development and maturation of Escherichia coli K-12 biofilms. Molecular Microbiology, 2003, 48, 933-946.	2.5	303
81	Biofilm formation by <i>Pseudomonas aeruginosa</i> wild type, flagella and type IV pili mutants. Molecular Microbiology, 2003, 48, 1511-1524.	2.5	880
82	Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology (United Kingdom), 2003, 149, 37-46.	1.8	124
83	Long-Term Succession of Structure and Diversity of a Biofilm Formed in a Model Drinking Water Distribution System. Applied and Environmental Microbiology, 2003, 69, 6899-6907.	3.1	199
84	Quorum-sensing-directed protein expression in Serratia proteamaculans B5a. Microbiology (United) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
85	<i>Curvularia</i> Haloperoxidase: Antimicrobial Activity and Potential Application as a Surface Disinfectant. Applied and Environmental Microbiology, 2003, 69, 4611-4617.	3.1	44
86	Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology (United Kingdom), 2002, 148, 87-102.	1.8	919
87	Statistical Analysis of <i>Pseudomonas aeruginosa</i> Biofilm Development: Impact of Mutations in Genes Involved in Twitching Motility, Cell-to-Cell Signaling, and Stationary-Phase Sigma Factor Expression. Applied and Environmental Microbiology, 2002, 68, 2008-2017.	3.1	259
88	Volatile Metabolites from Actinomycetes. Journal of Agricultural and Food Chemistry, 2002, 50, 2615-2621.	5.2	201
89	Lipopeptide Production in Pseudomonas sp. Strain DSS73 Is Regulated by Components of Sugar Beet Seed Exudate via the Gac Two-Component Regulatory System. Applied and Environmental Microbiology, 2002, 68, 4509-4516.	3.1	89
90	Genetic analysis of functions involved in the late stages of biofilm development inBurkholderia cepaciaH111. Molecular Microbiology, 2002, 46, 411-426.	2.5	141

#	Article	IF	CITATIONS
91	Recombinogenic engineering of conjugative plasmids with fluorescent marker cassettes. FEMS Microbiology Ecology, 2002, 42, 251-259.	2.7	27
92	Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. Journal of Microbiological Methods, 2001, 44, 239-251.	1.6	266
93	In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environmental Microbiology, 2001, 3, 110-122.	3.8	190
94	Changes in rRNA Levels during Stress Invalidates Results from mRNA Blotting: Fluorescence In Situ rRNA Hybridization Permits Renormalization for Estimation of Cellular mRNA Levels. Journal of Bacteriology, 2001, 183, 4747-4751.	2.2	59
95	N-Acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology (United Kingdom), 2001, 147, 3249-3262.	1.8	358
96	The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology (United Kingdom), 2001, 147, 2517-2528.	1.8	414
97	Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology (United Kingdom), 2001, 147, 1383-1391.	1.8	182
98	Alginate Overproduction Affects <i>Pseudomonas aeruginosa</i> Biofilm Structure and Function. Journal of Bacteriology, 2001, 183, 5395-5401.	2.2	584
99	Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environmental Microbiology, 2000, 2, 59-68.	3.8	175
100	Antigen 43 facilitates formation of multispecies biofilms. Environmental Microbiology, 2000, 2, 695-702.	3.8	142
101	Microbial communities: aggregates of individuals or co-ordinated systems. , 2000, , 199-214.		5
102	Inactivation of gltB Abolishes Expression of the Assimilatory Nitrate Reductase Gene (nasB) in Pseudomonas putida KT2442. Journal of Bacteriology, 2000, 182, 3368-3376.	2.2	12
103	Quantification of biofilm structures by the novel computer program comstat. Microbiology (United) Tj ETQq1 1 (0.784314 1.8	rgBT /Overloo
104	Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa. Microbiology (United Kingdom), 2000, 146, 2481-2493.	1.8	156
105	Development and Dynamics of Pseudomonassp. Biofilms. Journal of Bacteriology, 2000, 182, 6482-6489.	2.2	288
106	Bacterial Activity in the Rhizosphere Analyzed at the Single-Cell Level by Monitoring Ribosome Contents and Synthesis Rates. Applied and Environmental Microbiology, 2000, 66, 801-809.	3.1	174
107	Assessment of flhDC mRNA Levels inSerratia liquefaciens Swarm Cells. Journal of Bacteriology, 2000, 182, 2680-2686.	2.2	15
108	Complex Adaptive Systems Ecology. Advances in Microbial Ecology, 2000, , 233-275.	0.1	3

#	Article	IF	CITATIONS
109	Experimental reproducibility in flow-chamber biofilms. Microbiology (United Kingdom), 2000, 146, 2409-2415.	1.8	224
110	Distribution of Bacterial Growth Activity in Flow-Chamber Biofilms. Applied and Environmental Microbiology, 1999, 65, 4108-4117.	3.1	267
111	Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor. Applied and Environmental Microbiology, 1999, 65, 1251-1258.	3.1	220
112	Inhibition of Escherichia coli precursor-16S rRNA processing by mouse intestinal contents. Environmental Microbiology, 1999, 1, 23-32.	3.8	50
113	Application of molecular tools for in situ monitoring of bacterial growth activity. Environmental Microbiology, 1999, 1, 383-391.	3.8	85
114	[2] Molecular tools for study of biofilm physiology. Methods in Enzymology, 1999, 310, 20-42.	1.0	246
115	Monitoring the conjugal transfer of plasmid RP4 in activated sludge and in situ identification of the transconjugants. FEMS Microbiology Letters, 1999, 174, 9-17.	1.8	3
116	Plasmid transfer in the animal intestine and other dynamic bacterial populations: the role of community structure and environment. Microbiology (United Kingdom), 1999, 145, 2615-2622.	1.8	149
117	Production of Acylated Homoserine Lactones by Psychrotrophic Members of the <i>Enterobacteriaceae</i> Isolated from Foods. Applied and Environmental Microbiology, 1999, 65, 3458-3463.	3.1	91
118	Estimation of Growth Rates of <i>Escherichia coli</i> BJ4 in Streptomycin-Treated and Previously Germfree Mice by In Situ rRNA Hybridization. Vaccine Journal, 1999, 6, 434-436.	2.6	58
119	Surface Motility of <i>Serratia liquefaciens</i> MG1. Journal of Bacteriology, 1999, 181, 1703-1712.	2.2	188
120	Physiological States of Individual Salmonella typhimurium Cells Monitored by In Situ Reverse Transcription-PCR. Journal of Bacteriology, 1999, 181, 1733-1738.	2.2	38
121	Active Biological Containment for Bioremediation in the Rhizosphere. , 1999, , 151-156.		0
122	Biased 16S rDNA PCR amplification caused by interference from DNA flanking the template region. FEMS Microbiology Ecology, 1998, 26, 141-149.	2.7	190
123	Non-genetic population heterogeneity studied byin situpolymerase chain reaction. Molecular Microbiology, 1998, 27, 1099-1105.	2.5	68
124	In Situ Gene Expression in Mixed-Culture Biofilms: Evidence of Metabolic Interactions between Community Members. Applied and Environmental Microbiology, 1998, 64, 721-732.	3.1	307
125	New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria. Applied and Environmental Microbiology, 1998, 64, 2240-2246.	3.1	883
126	Establishment of New Genetic Traits in a Microbial Biofilm Community. Applied and Environmental Microbiology, 1998, 64, 2247-2255.	3.1	284

#	Article	IF	CITATIONS
127	Biased 16S rDNA PCR amplification caused by interference from DNA flanking the template region. FEMS Microbiology Ecology, 1998, 26, 141-149.	2.7	9
128	Characterization of Cell Lysis in <i>Pseudomonas putida</i> Induced upon Expression of Heterologous Killing Genes. Applied and Environmental Microbiology, 1998, 64, 4904-4911.	3.1	35
129	Effect of Bacterial Distribution and Activity on Conjugal Gene Transfer on the Phylloplane of the Bush Bean (<i>Phaseolus vulgaris</i>). Applied and Environmental Microbiology, 1998, 64, 1902-1909.	3.1	168
130	Construction of an Efficient Biologically Contained <i>Pseudomonas putida</i> Strain and Its Survival in Outdoor Assays. Applied and Environmental Microbiology, 1998, 64, 2072-2078.	3.1	53
131	Cloning, Sequencing, and Phenotypic Characterization of the <i>rpoS</i> Gene from <i>Pseudomonas putida</i> KT2440. Journal of Bacteriology, 1998, 180, 3421-3431.	2.2	101
132	Two Separate Regulatory Systems Participate in Control of Swarming Motility of <i>Serratia liquefaciens</i> MG1. Journal of Bacteriology, 1998, 180, 742-745.	2.2	91
133	Effects of stress treatments on the detection of Salmonella typhimurium by in situ hybridization. International Journal of Food Microbiology, 1997, 35, 251-258.	4.7	47
134	Detection of bioluminescence from individual bacterial cells: a comparison of two different low-light imaging systems. , 1997, 12, 7-13.		21
135	Activity of toluene-degrading Pseudomonas putida in the early growth phase of a biofilm for waste gas treatment. , 1997, 54, 131-141.		68
136	Activity of tolueneâ€degrading Pseudomonas putida in the early growth phase of a biofilm for waste gas treatment. Biotechnology and Bioengineering, 1997, 54, 131-141.	3.3	1
137	CASE: Complex Adaptive Systems Ecology. Advances in Microbial Ecology, 1997, , 27-79.	0.1	14
138	Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens. FEMS Microbiology Letters, 1997, 148, 115-122.	1.8	4
139	Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiology Letters, 1997, 149, 77-83.	1.8	4
140	Use of bioluminescence for monitoring the viability of individual Pseudomonas putida KT2442 cells. FEMS Microbiology Letters, 1997, 149, 133-140.	1.8	2
141	Involvement of N-acyl-l-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Molecular Microbiology, 1996, 20, 127-136.	2.5	344
142	Role of ribosome degradation in the death of heat-stressed Salmonella typhimurium. FEMS Microbiology Letters, 1996, 142, 155-160.	1.8	7
143	Induction of phospholipase- and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhD. Molecular Microbiology, 1995, 15, 445-454.	2.5	96
144	Suicide Microbes on the Loose. Nature Biotechnology, 1995, 13, 35-37.	17.5	22

#	Article	IF	CITATIONS
145	The Behavior of Bacteria Designed for Biodegradation. Nature Biotechnology, 1994, 12, 1349-1356.	17.5	76
146	Secretion of Serratia liquefaciens phospholipase from Escherichia coli. Molecular Microbiology, 1993, 8, 229-242.	2.5	34
147	Expression of extracellular phospholipase from <i>Serratia liquefaciens</i> is growthâ€phaseâ€dependent, cataboliteâ€repressed and regulated by anaerobiosis. Molecular Microbiology, 1992, 6, 1363-1374.	2.5	38
148	Analysis of an Escherichia coli mutant strain resistant to the cell-killing function encoded by the gef gene family. Molecular Microbiology, 1992, 6, 895-905.	2.5	33
149	Identification and characterization of mutations responsible for a runaway replication phenotype of plasmid R1. Gene, 1987, 57, 203-211.	2.2	15
150	Genetic analysis of the parB + locus of plasmid R1. Molecular Genetics and Genomics, 1987, 209, 122-128.	2.4	33
151	Partitioning of plasmid R1. Journal of Molecular Biology, 1986, 190, 269-279.	4.2	118
152	Purification and characterization of the CopB replication control protein, and precise mapping of its target site in the R1 plasmid. Plasmid, 1986, 15, 163-171.	1.4	34
153	Transcription and its regulation in the basic replicon region of plasmid R1. Molecular Genetics and Genomics, 1985, 198, 503-508.	2.4	27
154	Copy mutants of plasmid R1: Effects of base pair substitutions in the copA gene on the replication control system. Molecular Genetics and Genomics, 1984, 194, 286-292.	2.4	58
155	Low-copy-number plasmid-cloning vectors amplifiable by derepression of an inserted foreign promoter. Gene, 1984, 28, 45-54.	2.2	200
156	How the R1 replication control system responds to copy number deviations. Plasmid, 1984, 11, 264-267.	1.4	20
157	Control of replication of bacterial plasmids: Genetics, molecular biology, and physiology of the plasmid R1 system. Plasmid, 1984, 12, 71-90.	1.4	185
158	Convergent transcription interferes with expression of the copy number control gene, <i>copA</i> , from plasmid R1. EMBO Journal, 1982, 1, 323-328.	7.8	35
159	The sites of action of the two copy number control functions of plasmid R1. Molecular Genetics and Genomics, 1982, 187, 486-493.	2.4	99
160	Vertical dye-buoyant density gradients for rapid analysis and preparation of plasmid DNA. Analytical Biochemistry, 1981, 118, 191-193.	2.4	77
161	The nucleotide sequence of the replication control region of the resistance plasmid R1drd-19. Molecular Genetics and Genomics, 1981, 181, 116-122.	2.4	62
162	Isolation and characterization of new copy mutants of plasmid R1, and identification of a polypeptide involved in copy number control. Molecular Genetics and Genomics, 1981, 181, 123-130.	2.4	81

#	Article	IF	CITATIONS
163	Replication control functions of plasmid R1 act as inhibitors of expression of a gene required for replication. Molecular Genetics and Genomics, 1981, 184, 56-61.	2.4	70
164	Plasmid R1 Incompatibility. Contribution from the cop/rep and from the par Systems. , 1981, , 291-301.		6
165	Partitioning of plasmid R1 in Escherichia coli,. Plasmid, 1980, 4, 215-227.	1.4	221
166	Partitioning of plasmid R1 in Escherichia coli. Plasmid, 1980, 4, 332-349.	1.4	75
167	Control of Plasmid R1 Replication: Functions Involved in Replication, Copy Number Control, Incompatibility, and Switch-off of Replication. Journal of Bacteriology, 1980, 141, 111-120.	2.2	113
168	Plasmids with temperature-dependent copy number for amplification of cloned genes and their products. Gene, 1979, 6, 91-106.	2.2	184
169	Plasmid R1 in Salmonella typhimurium: Molecular instability and gene dosage effects. Plasmid, 1979, 2, 589-597.	1.4	13
170	Reevaluation of the Mode of Action of Streptolydigin in <i>Escherichia coli:</i> Induction of Transcription Termination In Vivo. Antimicrobial Agents and Chemotherapy, 1978, 13, 234-243.	3.2	8
171	Control of Protein Synthesis in <i>Escherichia coli</i> : Analysis of an Energy Source Shift-Down. Journal of Bacteriology, 1977, 131, 18-29.	2.2	59
172	Control of Ribosome Synthesis in <i>Escherichia coli</i> : Analysis of an Energy Source Shift-Down. Journal of Bacteriology, 1977, 131, 7-17.	2.2	63
173	The size of transcriptional units for ribosomal proteins in Escherichia coli rates of synthesis of ribosomal proteins during a nutritional shift-up. Molecular Genetics and Genomics, 1974, 130, 271-274.	2.4	20
174	The size of transcriptional units for ribosomal proteins in Escherichia coli. Molecular Genetics and Genomics, 1974, 129, 11-26.	2.4	29
175	Temporal Segregation: Succession in Biofilms. , 0, , 192-213.		3
176	In Situ Monitoring of Bacterial Presence and Activity. , 0, , 49-58.		0
177	Biofilm Formation of Legionella pneumophila in Complex Medium under Static and Dynamic Flow Conditions. , 0, , 398-402.		0