Jan Nordström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6210735/publications.pdf

Version: 2024-02-01

195 papers 4,734 citations

35 h-index 110387 64 g-index

206 all docs

206 docs citations

206 times ranked 1090 citing authors

#	Article	IF	CITATIONS
1	A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy. Journal of Computational Physics, 1999, 148, 341-365.	3.8	375
2	Review of summation-by-parts schemes for initial–boundary-value problems. Journal of Computational Physics, 2014, 268, 17-38.	3.8	314
3	Summation by parts operators for finite difference approximations of second derivatives. Journal of Computational Physics, 2004, 199, 503-540.	3.8	288
4	A stable high-order finite difference scheme for the compressible Navier–Stokes equations, far-field boundary conditions. Journal of Computational Physics, 2007, 225, 1020-1038.	3.8	195
5	A stable high-order finite difference scheme for the compressible Navier–Stokes equations. Journal of Computational Physics, 2008, 227, 4805-4824.	3.8	168
6	Boundary and Interface Conditions for High-Order Finite-Difference Methods Applied to the Euler and Navier–Stokes Equations. Journal of Computational Physics, 1999, 148, 621-645.	3.8	148
7	Stable and Accurate Artificial Dissipation. Journal of Scientific Computing, 2004, 21, 57-79.	2.3	144
8	On the order of accuracy for difference approximations of initial-boundary value problems. Journal of Computational Physics, 2006, 218, 333-352.	3.8	144
9	The Fringe Region Technique and the Fourier Method Used in the Direct Numerical Simulation of Spatially Evolving Viscous Flows. SIAM Journal of Scientific Computing, 1999, 20, 1365-1393.	2.8	132
10	High-Order Finite Difference Methods, Multidimensional Linear Problems, and Curvilinear Coordinates. Journal of Computational Physics, 2001, 173, 149-174.	3.8	127
11	Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions. Journal of Computational Physics, 2013, 234, 353-375.	3.8	120
12	A stable and conservative high order multi-block method for the compressible Navier–Stokes equations. Journal of Computational Physics, 2009, 228, 9020-9035.	3.8	119
13	Conservative Finite Difference Formulations, Variable Coefficients, Energy Estimates and Artificial Dissipation. Journal of Scientific Computing, 2006, 29, 375-404.	2.3	104
14	Well-Posed Boundary Conditions for the Navier-Stokes Equations. SIAM Journal on Numerical Analysis, 2005, 43, 1231-1255.	2.3	102
15	Finite volume methods, unstructured meshes and strict stability forÂhyperbolic problems. Applied Numerical Mathematics, 2003, 45, 453-473.	2.1	95
16	Simulation of Dynamic Earthquake Ruptures in Complex Geometries Using High-Order Finite Difference Methods. Journal of Scientific Computing, 2013, 55, 92-124.	2.3	77
17	Revisiting and Extending Interface Penalties forÂMulti-domain Summation-by-Parts Operators. Journal of Scientific Computing, 2010, 45, 118-150.	2.3	66
18	Summation-by-parts in time. Journal of Computational Physics, 2013, 251, 487-499.	3.8	66

#	Article	IF	CITATIONS
19	A stochastic Galerkin method for the Euler equations with Roe variable transformation. Journal of Computational Physics, 2014, 257, 481-500.	3.8	57
20	High order finite difference methods for wave propagation in discontinuous media. Journal of Computational Physics, 2006, 220, 249-269.	3.8	51
21	A Roadmap to Well Posed and Stable Problems in Computational Physics. Journal of Scientific Computing, 2017, 71, 365-385.	2.3	51
22	Numerical analysis of the Burgers' equation in the presence of uncertainty. Journal of Computational Physics, 2009, 228, 8394-8412.	3.8	50
23	Weak and strong wall boundary procedures and convergence to steady-state of the Navier–Stokes equations. Journal of Computational Physics, 2012, 231, 4867-4884.	3.8	49
24	Interaction of Waves with Frictional Interfaces Using Summation-by-Parts Difference Operators: Weak Enforcement of Nonlinear Boundary Conditions. Journal of Scientific Computing, 2012, 50, 341-367.	2.3	49
25	High-order accurate computations for unsteady aerodynamics. Computers and Fluids, 2007, 36, 636-649.	2.5	47
26	The SBP-SAT technique for initial value problems. Journal of Computational Physics, 2014, 270, 86-104.	3.8	46
27	Boundary conditions for a divergence free velocity–pressure formulation of the Navier–Stokes equations. Journal of Computational Physics, 2007, 225, 874-890.	3.8	45
28	Steady-State Computations Using Summation-by-Parts Operators. Journal of Scientific Computing, 2005, 24, 79-95.	2.3	44
29	Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Mathematical Engineering, 2015, , .	0.2	43
30	Title is missing!. Journal of Scientific Computing, 2003, 18, 215-234.	2.3	42
31	The influence of open boundary conditions on the convergence to steady state for the Navier-Stokes equations. Journal of Computational Physics, 1989, 85, 210-244.	3.8	40
32	The use of characteristic boundary conditions for the Navier-Stokes equations. Computers and Fluids, 1995, 24, 609-623.	2.5	40
33	Error Bounded Schemes for Time-dependent Hyperbolic Problems. SIAM Journal of Scientific Computing, 2008, 30, 46-59.	2.8	38
34	Application of a Line-Implicit Scheme on Stretched Unstructured Grids. , 2009, , .		36
35	A stable and high-order accurate conjugate heat transfer problem. Journal of Computational Physics, 2010, 229, 5440-5456.	3.8	36
36	Stability of finite volume approximations for the Laplacian operator on quadrilateral and triangular grids. Applied Numerical Mathematics, 2004, 51, 101-125.	2.1	35

#	Article	IF	Citations
37	A stable hybrid method for hyperbolic problems. Journal of Computational Physics, 2006, 212, 436-453.	3.8	31
38	Superconvergent functional output for time-dependent problems using finite differences on summation-by-parts form. Journal of Computational Physics, 2012, 231, 6846-6860.	3.8	31
39	Stable Robin solid wall boundary conditions for the Navier–Stokes equations. Journal of Computational Physics, 2011, 230, 7519-7532.	3.8	30
40	Energy stable and high-order-accurate finite difference methods on staggered grids. Journal of Computational Physics, 2017, 346, 572-589.	3.8	30
41	Accurate Solutions of the Navier-Stokes Equations Despite Unknown Outflow Boundary Data. Journal of Computational Physics, 1995, 120, 184-205.	3.8	29
42	Influence of Weak and Strong Solid Wall Boundary Conditions on the Convergence to Steady-State of the Navier-Stokes Equations. , 2009, , .		29
43	Finite volume approximations and strict stability for hyperbolic problems. Applied Numerical Mathematics, 2001, 38, 237-255.	2.1	28
44	On the convergence rates of energy-stable finite-difference schemes. Journal of Computational Physics, 2019, 397, 108819.	3.8	27
45	Interface procedures for finite difference approximations of the advection–diffusion equation. Journal of Computational and Applied Mathematics, 2011, 236, 602-620.	2.0	26
46	A hybrid method for unsteady inviscid fluid flow. Computers and Fluids, 2009, 38, 875-882.	2.5	22
47	Conjugate heat transfer for the unsteady compressible Navier–Stokes equations using a multi-block coupling. Computers and Fluids, 2013, 72, 20-29.	2.5	22
48	Uniformly best wavenumber approximations by spatial central difference operators. Journal of Computational Physics, 2015, 300, 695-709.	3.8	22
49	A hybrid framework for coupling arbitrary summation-by-parts schemes on general meshes. Journal of Computational Physics, 2018, 362, 49-68.	3.8	22
50	Energy stable boundary conditions for the nonlinear incompressible Navier–Stokes equations. Mathematics of Computation, 2018, 88, 665-690.	2.1	22
51	On the impact of boundary conditions on dual consistent finite difference discretizations. Journal of Computational Physics, 2013, 236, 41-55.	3.8	21
52	A simple and efficient incompressible Navier–Stokes solver for unsteady complex geometry flows on truncated domains. Computers and Fluids, 2017, 150, 84-94.	2.5	21
53	An accuracy evaluation of unstructured node-centred finite volume methods. Applied Numerical Mathematics, 2008, 58, 1142-1158.	2.1	20
54	A stable and conservative method for locally adapting the design order of finite difference schemes. Journal of Computational Physics, 2011, 230, 4216-4231.	3.8	20

#	Article	IF	CITATIONS
55	Error Boundedness of Discontinuous Galerkin Spectral Element Approximations of Hyperbolic Problems. Journal of Scientific Computing, 2017, 72, 314-330.	2.3	20
56	Stable artificial dissipation operators for finite volume schemes on unstructured grids. Applied Numerical Mathematics, 2006, 56, 1481-1490.	2.1	18
57	Fully discrete energy stable high order finite difference methods for hyperbolic problems in deforming domains. Journal of Computational Physics, 2015, 291, 82-98.	3.8	18
58	On the order of Accuracy of Finite Difference Operators on Diagonal Norm Based Summation-by-Parts Form. SIAM Journal on Numerical Analysis, 2018, 56, 1048-1063.	2.3	18
59	Encapsulated high order difference operators on curvilinear non-conforming grids. Journal of Computational Physics, 2019, 385, 209-224.	3.8	16
60	Simulation of Earthquake Rupture Dynamics in Complex Geometries Using Coupled Finite Difference and Finite Volume Methods. Communications in Computational Physics, 2015, 17, 337-370.	1.7	15
61	A stable and efficient hybrid scheme for viscous problems in complex geometries. Journal of Computational Physics, 2007, 226, 1291-1309.	3.8	14
62	Duality based boundary conditions and dual consistent finite difference discretizations of the Navier–Stokes and Euler equations. Journal of Computational Physics, 2014, 259, 135-153.	3.8	14
63	Revisiting well-posed boundary conditions for the shallow water equations. Dynamics of Atmospheres and Oceans, 2014, 66, 1-9.	1.8	14
64	Variance reduction through robust design of boundary conditions for stochastic hyperbolic systems of equations. Journal of Computational Physics, 2015, 282, 1-22.	3.8	14
65	Elimination of First Order Errors in Shock Calculations. SIAM Journal on Numerical Analysis, 2001, 38, 1986-1998.	2.3	13
66	Investigation of acceleration effects on missile aerodynamics using computational fluid dynamics. Aerospace Science and Technology, 2009, 13, 197-203.	4.8	13
67	Weak Versus Strong No-Slip Boundary Conditions for the Navier-Stokes Equations. Engineering Applications of Computational Fluid Mechanics, 2010, 4, 29-38.	3.1	13
68	Summation-By-Parts in Time: The Second Derivative. SIAM Journal of Scientific Computing, 2016, 38, A1561-A1586.	2.8	13
69	Properties of Runge-Kutta-Summation-By-Parts methods. Journal of Computational Physics, 2020, 419, 109684.	3.8	13
70	A computational study of vortex–airfoil interaction using high-order finite difference methods. Computers and Fluids, 2010, 39, 1267-1274.	2.5	12
71	Stable, high order accurate adaptive schemes for long time, highly intermittent geophysics problems. Journal of Computational and Applied Mathematics, 2014, 271, 328-338.	2.0	12
72	Theoretical treatment of fluid flow for accelerating bodies. Theoretical and Computational Fluid Dynamics, 2016, 30, 449-467.	2.2	12

#	Article	IF	CITATIONS
73	Energy Stable Model Reduction of Neurons by Nonnegative Discrete Empirical Interpolation. SIAM Journal of Scientific Computing, 2016, 38, B297-B326.	2.8	12
74	Exact Non-reflecting Boundary Conditions Revisited: Well-Posedness and Stability. Foundations of Computational Mathematics, 2017, 17, 957-986.	2.5	11
75	On conservation and stability properties for summation-by-parts schemes. Journal of Computational Physics, 2017, 344, 451-464.	3.8	11
76	Simulation of Wave Propagation Along Fluid-Filled Cracks Using High-Order Summation-by-Parts Operators and Implicit-Explicit Time Stepping. SIAM Journal of Scientific Computing, 2017, 39, B675-B702.	2.8	11
77	A new high order energy and enstrophy conserving Arakawa-like Jacobian differential operator. Journal of Computational Physics, 2015, 301, 167-177.	3.8	10
78	A well-posed and stable stochastic Galerkin formulation of the incompressible Navier–Stokes equations with random data. Journal of Computational Physics, 2016, 306, 92-116.	3.8	10
79	On pseudo-spectral time discretizations in summation-by-parts form. Journal of Computational Physics, 2018, 360, 192-201.	3.8	10
80	The Number of Boundary Conditions for Initial Boundary Value Problems. SIAM Journal on Numerical Analysis, 2020, 58, 2818-2828.	2.3	10
81	Trace preserving quantum dynamics using a novel reparametrization-neutral summation-by-parts difference operator. Journal of Computational Physics, 2021, 425, 109917.	3.8	10
82	Fluid Structure Interaction Problems: the Necessity of a Well Posed, Stable and Accurate Formulation. Communications in Computational Physics, 2010, 8, 1111-1138.	1.7	10
83	Analysis of the order of accuracy for node-centered finite volume schemes. Applied Numerical Mathematics, 2009, 59, 2659-2676.	2.1	9
84	Boundary procedures for the time-dependent Burgers' equation under uncertainty. Acta Mathematica Scientia, 2010, 30, 539-550.	1.0	9
85	An intrusive hybrid method for discontinuous two-phase flow under uncertainty. Computers and Fluids, 2013, 86, 228-239.	2.5	9
86	A Flexible Boundary Procedure for Hyperbolic Problems: Multiple Penalty Terms Applied in a Domain. Communications in Computational Physics, 2014, 16, 345-358.	1.7	9
87	Summation-by-Parts operators with minimal dispersion error for coarse grid flow calculations. Journal of Computational Physics, 2017, 340, 160-176.	3.8	9
88	Well-posed and stable transmission problems. Journal of Computational Physics, 2018, 364, 95-110.	3.8	9
89	Stable and Accurate Filtering Procedures. Journal of Scientific Computing, 2020, 82, 1.	2.3	9
90	On extrapolation procedures at artificial outflow boundaries for the time-dependent Navier-Stokes equations. Applied Numerical Mathematics, 1997, 23, 457-468.	2.1	8

#	Article	IF	Citations
91	A stable and efficient hybrid method for aeroacoustic sound generation and propagation. Comptes Rendus - Mecanique, 2005, 333, 713-718.	2.1	8
92	High-order accurate difference schemes for the Hodgkin–Huxley equations. Journal of Computational Physics, 2013, 252, 573-590.	3.8	8
93	On stability and monotonicity requirements of finite difference approximations of stochastic conservation laws with random viscosity. Computer Methods in Applied Mechanics and Engineering, 2013, 258, 134-151.	6.6	8
94	On Long Time Error Bounds for the Wave Equation on Second Order Form. Journal of Scientific Computing, 2018, 76, 1327-1336.	2.3	8
95	The spatial operator in the incompressible Navier–Stokes, Oseen and Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2020, 363, 112857.	6.6	8
96	A New Class of A Stable Summation by Parts Time Integration Schemes with Strong Initial Conditions. Journal of Scientific Computing, 2021, 87, 1.	2.3	8
97	Global Artificial Boundary Conditions for Computation of External Flows with Jets. AIAA Journal, 2000, 38, 2014-2022.	2.6	7
98	Highâ€order compact finite difference schemes for the vorticity–divergence representation of the spherical shallow water equations. International Journal for Numerical Methods in Fluids, 2015, 78, 709-738.	1.6	7
99	Coupling Requirements for Multiphysics Problems Posed on Two Domains. SIAM Journal on Numerical Analysis, 2017, 55, 2885-2904.	2.3	7
100	Stability of Discontinuous Galerkin Spectral Element Schemes for Wave Propagation when the Coefficient Matrices have Jumps. Journal of Scientific Computing, 2021, 88, 3.	2.3	7
101	On flux-extrapolation at supersonic outflow boundaries. Applied Numerical Mathematics, 1999, 30, 447-457.	2.1	6
102	Investigations of Acceleration Effects on Misssile Aerodynamics Using CFD., 2003,,.		6
103	A new multigrid formulation for high order finite difference methods on summation-by-parts form. Journal of Computational Physics, 2018, 359, 216-238.	3.8	6
104	Hybrid Computational-Fluid-Dynamics Platformto Investigate Aircraft Trailing Vortices. Journal of Aircraft, 2019, 56, 344-355.	2.4	6
105	Eigenvalue Analysis for Summation-by-Parts Finite Difference Time Discretizations. SIAM Journal on Numerical Analysis, 2020, 58, 907-928.	2.3	6
106	Neural network enhanced computations on coarse grids. Journal of Computational Physics, 2021, 425, 109821.	3.8	6
107	Nonlinear and linearised primal and dual initial boundary value problems: When are they bounded? How are they connected?. Journal of Computational Physics, 2022, 455, 111001.	3.8	6
108	A linear and nonlinear analysis of the shallow water equations and its impact on boundary conditions. Journal of Computational Physics, 2022, 463, 111254.	3.8	6

#	Article	IF	Citations
109	A multi-domain summation-by-parts formulation for complex geometries. Journal of Computational Physics, 2022, 463, 111269.	3.8	6
110	Extrapolation procedures for the time-dependent Navier-Stokes equations. AIAA Journal, 1992, 30, 1654-1656.	2.6	5
111	Accuracy Requirements for Transient Aerodynamics. , 2003, , .		5
112	Energy decay of vortices in viscous fluids: an applied mathematics view. Journal of Fluid Mechanics, 2012, 709, 593-609.	3.4	5
113	Spectral analysis of the continuous and discretized heat and advection equation on single and multiple domains. Applied Numerical Mathematics, 2012, 62, 1620-1638.	2.1	5
114	On the relation between conservation and dual consistency for summation-by-parts schemes. Journal of Computational Physics, 2017, 344, 437-439.	3.8	5
115	Level set methods for stochastic discontinuity detection in nonlinear problems. Journal of Computational Physics, 2019, 392, 511-531.	3.8	5
116	Well-posedness, stability and conservation for a discontinuous interface problem. BIT Numerical Mathematics, 2016, 56, 681-704.	2.0	4
117	A stable and accurate Davies-like relaxation procedure using multiple penalty terms for lateral boundary conditions. Dynamics of Atmospheres and Oceans, 2016, 73, 34-46.	1.8	4
118	Summation-by-Parts Operators with Minimal Dispersion Error for Accurate and Efficient Flow Calculations. , $2016, , .$		4
119	Efficient and error minimized coupling procedures for unstructured and moving meshes. Journal of Computational Physics, 2020, 406, 109158.	3.8	4
120	Convergence of energy stable finite-difference schemes with interfaces. Journal of Computational Physics, 2021, 429, 110020.	3.8	4
121	Effect of Edge-Based Discretization Schemes in Computations of the DLR F6 Wing-Body Configuration. , 2008, , .		3
122	Accurate and Stable Calculations Involving Shocks Using a New Hybrid Scheme. , 2009, , .		3
123	Constructing non-reflecting boundary conditions using summation-by-parts in time. Journal of Computational Physics, 2017, 331, 38-48.	3.8	3
124	Response to "Convergence of Summation-by-Parts Finite Difference Methods for the Wave Equationâ€. Journal of Scientific Computing, 2018, 74, 1188-1192.	2.3	3
125	Finite difference schemes with transferable interfaces for parabolic problems. Journal of Computational Physics, 2018, 375, 935-949.	3.8	3
126	Practical inlet boundary conditions for internal flow calculations. Computers and Fluids, 2018, 175, 159-166.	2.5	3

#	Article	IF	CITATIONS
127	The relation between primal and dual boundary conditions for hyperbolic systems of equations. Journal of Computational Physics, 2020, 401, 109032.	3.8	3
128	Multigrid Schemes for High Order Discretizations of Hyperbolic Problems. Journal of Scientific Computing, 2020, 82, 1.	2.3	3
129	Accurate solution-adaptive finite difference schemes for coarse and fine grids. Journal of Computational Physics, 2020, 410, 109393.	3.8	3
130	On the Theoretical Foundation of Overset Grid Methods for Hyperbolic Problems: Well-Posedness and Conservation. Journal of Computational Physics, 2021, , 110732.	3.8	3
131	Linear and Nonlinear Boundary Conditions for Wave Propagation Problems. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2013, , 283-299.	0.3	3
132	Global artificial boundary conditions for computation of external flow problems with propulsive jets. , $1999, , .$		2
133	Artificial dissipation and accuracy downstream of slightly viscous shocks. , 2001, , .		2
134	Measurements and Numerical Modelling of Orifice Flow in Microchannels. , 2009, , .		2
135	A new well-posed vorticity divergence formulation of the shallow water equations. Ocean Modelling, 2015, 93, 1-6.	2.4	2
136	A stable and accurate relaxation technique using multiple penalty terms in space and time. Dynamics of Atmospheres and Oceans, 2017, 79, 56-65.	1.8	2
137	Spurious solutions for the advectionâ€diffusion equation using wide stencils for approximating the second derivative. Numerical Methods for Partial Differential Equations, 2018, 34, 501-517.	3.6	2
138	On Stochastic Investigation of Flow Problems Using the Viscous Burgers' Equation as an Example. Journal of Scientific Computing, 2019, 81, 1111-1117.	2.3	2
139	Dual Time-Stepping Using Second Derivatives. Journal of Scientific Computing, 2019, 81, 1050-1071.	2.3	2
140	Learning to differentiate. Journal of Computational Physics, 2021, 424, 109873.	3.8	2
141	Spectral properties of the incompressible Navier-Stokes equations. Journal of Computational Physics, 2021, 429, 110019.	3.8	2
142	Stable Filtering Procedures for Nodal Discontinuous Galerkin Methods. Journal of Scientific Computing, 2021, 87, 1.	2.3	2
143	Impact of wall modeling on kinetic energy stability for the compressible Navier-Stokes equations. Computers and Fluids, 2021, 220, 104870.	2.5	2
144	Energy stable wall modeling for the Navier-Stokes equations. Journal of Computational Physics, 2022, 457, 111046.	3.8	2

#	Article	IF	Citations
145	Accuracy of the time-dependent Navier-Stokes equations using extrapolation procedures at outflow boundaries. , $1991, , .$		1
146	Duality based boundary treatment for the Euler and Navier-Stokes equations. , 2013, , .		1
147	Polynomial Chaos Methods. Mathematical Engineering, 2015, , 23-29.	0.2	1
148	Well Posed Problems and Boundary Conditions in Computational Fluid Dynamics (Invited)., 2015,,.		1
149	Efficient fully discrete summation-by-parts schemes for unsteady flow problems. BIT Numerical Mathematics, 2016, 56, 951-966.	2.0	1
150	Hyperbolic systems of equations posed on erroneous curved domains. Journal of Computational Physics, 2016, 308, 438-442.	3.8	1
151	A fully discrete, stable and conservative summation-by-parts formulation for deforming interfaces. Journal of Computational Physics, 2017, 339, 500-524.	3.8	1
152	The effect of uncertain geometries on advection–diffusion of scalar quantities. BIT Numerical Mathematics, 2018, 58, 509-529.	2.0	1
153	A Stable Domain Decomposition Technique for Advection–Diffusion Problems. Journal of Scientific Computing, 2018, 77, 755-774.	2.3	1
154	Robust boundary conditions for stochastic incompletely parabolic systems of equations. Journal of Computational Physics, 2018, 371, 192-213.	3.8	1
155	Accuracy of Stable, High-order Finite Difference Methods for Hyperbolic Systems with Non-smooth Wave Speeds. Journal of Scientific Computing, 2019, 81, 2356-2387.	2.3	1
156	A dual consistent summation-by-parts formulation for the linearized incompressible Navier–Stokes equations posed on deforming domains. Journal of Computational Physics, 2019, 376, 322-338.	3.8	1
157	On conservation and dual consistency for summation-by-parts based approximations of parabolic problems. Journal of Computational Physics, 2020, 410, 109282.	3.8	1
158	Stable Dynamical Adaptive Mesh Refinement. Journal of Scientific Computing, 2021, 86, 1.	2.3	1
159	Efficiency of Shock Capturing Schemes for Burgers' Equation with Boundary Uncertainty. , 2010, , 737-745.		1
160	GPU-acceleration of A High Order Finite Difference Code Using Curvilinear Coordinates., 2020,,.		1
161	Provably non-stiff implementation of weak coupling conditions for hyperbolic problems. Numerische Mathematik, 2022, 150, 551-589.	1.9	1
162	A stable and conservative nonlinear interface coupling for the incompressible Euler equations. Applied Mathematics Letters, 2022, , 108171.	2.7	1

#	Article	IF	CITATIONS
163	Energy absorbing boundary conditions for the Navier-Stokes equation. , 1986, , 505-510.		O
164	Boundary Procedures for the Time-Dependent Stochastic Burgers' Equation. , 2009, , .		0
165	Analysis of Mesh and Boundary Effects on the Accuracy of Node-Centered Finite Volume Schemes. , 2009, , .		O
166	Energy Stable High Order Finite Difference Methods for Hyperbolic Equations in Moving Coordinate Systems. , $2013, \ldots$		0
167	The Influence of Viscous Operator and Wall Boundary Conditions on the Accuracy of the Navier-Stokes Equations. , 2013, , .		O
168	Increasing the convergence rate to steady-state by using multiple penalty terms applied in a domain. , 2013, , .		0
169	Well-posedness and Stability of Exact Non-reflecting Boundary Conditions. , 2013, , .		O
170	Random Field Representation. Mathematical Engineering, 2015, , 11-21.	0.2	0
171	Numerical Solution of Hyperbolic Problems. Mathematical Engineering, 2015, , 31-44.	0.2	O
172	Linear Transport Under Uncertainty. Mathematical Engineering, 2015, , 47-80.	0.2	0
173	Nonlinear Transport Under Uncertainty. Mathematical Engineering, 2015, , 81-109.	0.2	0
174	A global time integration approach for realistic unsteady flow computations. , 2016, , .		0
175	Correction: A Stable and Conservative Coupling of the Unsteady Compressible Navier-Stokes Equations at Interfaces Using Finite Difference and Finite Volume Methods. , 2018, , .		0
176	A Stable and Consevative Coupling of the Unsteady Compressible Navier-Stokes Equations at Interfaces Using Finite Difference and Finite Volume methods. , 2018, , .		0
177	A Stable, High Order Accurate and Efficient Hybrid Method for Flow Calculations in Complex Geometries. , 2018, , .		O
178	Summation-by-Parts Operators for Non-Simply Connected Domains. SIAM Journal of Scientific Computing, 2018, 40, A1250-A1273.	2.8	0
179	An energy stable coupling procedure for the compressible and incompressible Navier-Stokes equations. Journal of Computational Physics, 2019, 396, 280-302.	3.8	O
180	Multigrid schemes for high order discretizations of hyperbolic problems. , 2019, , .		0

#	Article	IF	Citations
181	An efficient hybrid method for uncertainty quantification. BIT Numerical Mathematics, 0, , 1.	2.0	0
182	Global artificial boundary conditions for computation of external flows with jets. AIAA Journal, 2000, 38, 2014-2022.	2.6	0
183	Energy Stability of the MUSCL Scheme. , 2010, , 61-68.		0
184	A Stable and High Order Interface Procedure for Conjugate Heat Transfer Problems. , 2010, , 599-607.		0
185	The SBP-SAT Technique for Time-Discretization. , 2013, , .		0
186	A Hybrid Scheme for Two-Phase Flow. Mathematical Engineering, 2015, , 149-172.	0.2	0
187	AN INVESTIGATION OF UNCERTAINTY DUE TO STOCHASTICALLY VARYING GEOMETRY: AN INITIAL STUDY. , 2015, , .		0
188	Well-Posedness, Stability and Conservation for a Discontinuous Interface Problem: An Initial Investigation. Lecture Notes in Computational Science and Engineering, 2015, , 147-155.	0.3	0
189	Fully Discrete Energy Stable High Order Finite Difference Methods for Hyperbolic Problems in Deforming Domains. Lecture Notes in Computational Science and Engineering, 2015, , 385-395.	0.3	O
190	Efficient Fully Discrete Summation-by-Parts Schemes for Unsteady Flow Problems: An Initial Investigation. Lecture Notes in Computational Science and Engineering, 2015, , 345-353.	0.3	0
191	A STABLE AND CONSERVATIVE TIME-DEPENDENT INTERFACE FORMULATION ON SUMMATION-BY-PARTS FORM: AN INITIAL INVESTIGATION. , 2016, , .		0
192	ENERGY STABLE HIGH ORDER FINITE DIFFERENCE METHODS ON STAGGERED GRIDS: AN INITIAL INVESTIGATION. , 2016, , .		0
193	IMPROVED DUAL TIME–STEPPING USING SECOND DERIVATIVES. , 2016, , .		0
194	STOCHASTIC GALERKIN PROJECTION AND NUMERICAL INTEGRATION FOR STOCHASTIC SYSTEMS OF EQUATIONS., 2017,,.		0
195	Robust Design of Initial Boundary Value Problems. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2019, , 463-478.	0.3	0