
Rosa De Finis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6210602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Second-Order Effects on Thermoelastic Behaviour in the Proximity of Crack Tips on Titanium. Experimental Mechanics, 2022, 62, 521.	2.0	4
2	Crack tip position evaluation and Paris' law assessment of a propagating crack by means of temperature-based approaches. Procedia Structural Integrity, 2022, 39, 528-545.	0.8	3
3	Infrared Thermography to Study Damage During Static and Cyclic Loading of Composites. Lecture Notes in Civil Engineering, 2021, , 309-318.	0.4	1
4	Study of Damage Behavior of T-Joint Components by Means of Different Non-destructive Techniques. Lecture Notes in Civil Engineering, 2021, , 319-328.	0.4	0
5	Fatigue behaviour assessment of C45 steel by means of energy-based methods. IOP Conference Series: Materials Science and Engineering, 2021, 1038, 012015.	0.6	4
6	Investigation of the plastic zone around the crack tip in small-scale pure Titanium specimens by means of Thermal Signal Analysis and Digital Image Correlation. IOP Conference Series: Materials Science and Engineering, 2021, 1038, 012011.	0.6	3
7	On the relationship between mechanical energy rate and heat dissipated rate during fatigue for a C45 steel depending on stress ratio. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2781-2799.	3.4	8
8	Thermoelastic stress analysis as a method for the quantitative non-destructive evaluation of bonded CFRP T-joints. NDT and E International, 2021, 124, 102526.	3.7	5
9	Considerations on the Thermoelastic Effect in proximity of crack tips on Titanium and Aluminium: a new formulation. Procedia Structural Integrity, 2021, 33, 528-543.	0.8	0
10	Assessment of TSA Technique for the Estimation of CFRP T-Joint Debonding. Journal of Nondestructive Evaluation, 2021, 40, 1.	2.4	2
11	An experimental procedure based on infrared thermography for the assessment of crack density in quasi-isotropic CFRP. Engineering Fracture Mechanics, 2021, 258, 108108.	4.3	10
12	Estimation of the Dissipative Heat Sources Related to the Total Energy Input of a CFRP Composite by Using the Second Amplitude Harmonic of the Thermal Signal. Materials, 2020, 13, 2820.	2.9	11
13	Evaluation of damage in composites by using thermoelastic stress analysis: A promising technique to assess the stiffness degradation. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 2085-2100.	3.4	18
14	A multianalysis thermographyâ€based approach for fatigue and damage investigations of ASTM A182 F6NM steel at two stress ratios. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 267-283.	3.4	30
15	A Thermoelastic Stress Analysis General Model: Study of the Influence of Biaxial Residual Stress on Aluminium and Titanium. Metals, 2019, 9, 671.	2.3	11
16	Fatigue damage analysis of composite materials using thermography-based techniques. Procedia Structural Integrity, 2019, 18, 781-791.	0.8	12
17	Study of the thermo-elastic stress analysis (TSA) sensitivity in the evaluation of residual stress in non-ferrous metal. , 2019, , .		2
18	Fatigue behaviour assessment of automated fiber placement composites by adopting the thermal signal		0

analysis., 2019,,.

Rosa De Finis

#	Article	IF	CITATIONS
19	ls the temperature plateau of a selfâ€heating test a robust parameter to investigate the fatigue limit of steels with thermography?. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 917-934.	3.4	21
20	Correlation between Thermal Behaviour of AA5754-H111 during Fatigue Loading and Fatigue Strength at Fixed Number of Cycles. Materials, 2018, 11, 719.	2.9	8
21	Capability of infrared thermography for studying the friction stir welding process. , 2018, , .		1
22	Potentialities of thermal signal analysis approach for a rapid mechanical characterisation of high diffusivity materials. , 2018, , .		1
23	Thermographic signal analysis of friction stir welded AA 5754 H111 joints. , 2018, , .		1
24	Study of damage evolution in composite materials based on the Thermoelastic Phase Analysis (TPA) method. Composites Part B: Engineering, 2017, 117, 49-60.	12.0	40
25	Energetic approach based on IRT to assess plastic behaviour in CT specimens. Proceedings of SPIE, 2017, ,	0.8	1
26	Damage monitoring in fracture mechanics by evaluation of the heat dissipated in the cyclic plastic zone ahead of the crack tip with thermal measurements. Engineering Fracture Mechanics, 2017, 181, 65-76.	4.3	41
27	Optimization and Characterization of the Friction Stir Welded Sheets of AA 5754-H111: Monitoring of the Quality of Joints with Thermographic Techniques. Materials, 2017, 10, 1165.	2.9	28
28	Early Detection of Damage Mechanisms in Composites During Fatigue Tests. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 133-141.	0.5	6
29	Fatigue Behaviour of Stainless Steels: A Multi-parametric Approach. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 1-8.	0.5	5
30	Mechanical Behaviour of Stainless Steels under Dynamic Loading: An Investigation with Thermal Methods. Journal of Imaging, 2016, 2, 32.	3.0	20
31	Study of the plastic behavior around the crack tip by means of thermal methods. Procedia Structural Integrity, 2016, 2, 2113-2122.	0.8	8
32	Automatic procedure for evaluating the Paris Law of martensitic and austenitic stainless steels by means of thermal methods. Engineering Fracture Mechanics, 2016, 163, 206-219.	4.3	32
33	A new rapid thermographic method to assess the fatigue limit in GFRP composites. Composites Part B: Engineering, 2016, 103, 60-67.	12.0	67
34	Crack Growth Monitoring in Stainless Steels by Means of TSA Technique. Procedia Engineering, 2015, 109, 89-96.	1.2	13
35	Experimental Study of the Crack Growth in Stainless Steels Using Thermal Methods. Procedia Engineering, 2015, 109, 338-345.	1.2	12
36	Fatigue limit evaluation of various martensitic stainless steels with new robust thermographic data analysis. International Journal of Fatigue, 2015, 74, 88-96.	5.7	79

#	Article	IF	CITATIONS
37	Fatigue limit evaluation of martensitic steels with thermal methods. , 2014, , .		11