
Marcelo Nalin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6210303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural and luminescence characterization of europium-doped niobium germanate glasses and glass-ceramics: Novel insights from 93Nb solid-state NMR spectroscopy. Ceramics International, 2022, 48, 20801-20808.	4.8	5
2	Thermal and structural modification in transparent and magnetic gallogermanate glasses induced by Gd2O3. Journal of Alloys and Compounds, 2022, 912, 165181.	5.5	8
3	Is the structural relaxation of glasses controlled by equilibrium shear viscosity?. Journal of the American Ceramic Society, 2021, 104, 2066-2076.	3.8	22
4	Fundamental studies of magneto-optical borogermanate glasses and derived optical fibers containing Tb3+. Journal of Materials Research and Technology, 2021, 11, 312-327.	5.8	25
5	Heavy metal oxide glass-ceramics containing luminescent gallium-garnets single crystals for photonic applications. Journal of Alloys and Compounds, 2021, 864, 158804.	5.5	7
6	Self-Supported Smart Bacterial Nanocellulose–Phosphotungstic Acid Nanocomposites for Photochromic Applications. Frontiers in Materials, 2021, 8, .	2.4	11
7	The impact of P/Ca molar ratio on physicochemical and release properties of calcium polyphosphate coacervates. Materials Chemistry and Physics, 2021, 264, 124471.	4.0	2
8	Magneto-optical borogermanate glasses and fibers containing Tb3+. Scientific Reports, 2021, 11, 9906.	3.3	23
9	Controlled formation of metallic tellurium nanocrystals in tellurite glasses using femtosecond direct laser writing. Journal of Materials Research and Technology, 2021, 13, 1296-1304.	5.8	12
10	Comparison of structural and spectroscopic properties of Ho3+-doped niobate compounds. Materials Research Bulletin, 2021, 143, 111451.	5.2	3
11	Glass forming regions, structure and properties of lanthanum barium germanate and gallate glasses. Journal of Non-Crystalline Solids, 2021, 571, 121064.	3.1	21
12	Simple, fast and environmentally friendly method to determine ciprofloxacin in wastewater samples based on an impedimetric immunosensor. RSC Advances, 2020, 10, 1838-1847.	3.6	11
13	Experimental and Theoretical Study of SbPO4 under Compression. Inorganic Chemistry, 2020, 59, 287-307.	4.0	14
14	Label-Free Ultrasensitive and Environment-Friendly Immunosensor Based on a Silica Optical Fiber for the Determination of Ciprofloxacin in Wastewater Samples. Analytical Chemistry, 2020, 92, 14415-14422.	6.5	14
15	Embedding CoPt magnetic nanoparticles within a phosphate glass matrix. Journal of Alloys and Compounds, 2020, 848, 156576.	5.5	5
16	Structural Study of the Germanium–Aluminum–Borate Glasses by Solid State NMR and Raman Spectroscopies. Journal of Physical Chemistry C, 2020, 124, 24460-24469.	3.1	9
17	Production of Transparent Soda-Lime Glass from Rice Husk Containing Iron and Manganese Impurities. Ceramics, 2020, 3, 494-506.	2.6	3
18	Optical and EPR studies of zinc phosphate glasses containing Mn2+ ions. Journal of Materials Science, 2020, 55, 9948-9961.	3.7	7

#	Article	IF	CITATIONS
19	High tantalum oxide content in Eu3+-doped phosphate glass and glass-ceramics for photonic applications. Journal of Alloys and Compounds, 2020, 842, 155853.	5.5	22
20	A review on polyphosphate coacervates—structural properties and bioapplications. Journal of Sol-Gel Science and Technology, 2020, 94, 531-543.	2.4	11
21	Thermal and structural modification in transparent and magnetic germanoborate glasses induced by Gd2O3. Ceramics International, 2020, 46, 22079-22089.	4.8	22
22	Tuning multicolor emission in AgNCs/Tm3+/Mn2+-doped fluorophosphate glasses. Journal of Non-Crystalline Solids, 2020, 535, 119968.	3.1	7
23	Phosphate glasses containing monodisperse Fe3â~ÎrO4@SiO2 stellate nanoparticles obtained by melt-quenching process. Ceramics International, 2020, 46, 12120-12127.	4.8	10
24	BiF ₃ Incorporation in Na/Ba Mixed Network Modifier Fluoride–Phosphate Glasses: Structural Studies by Solid-State NMR and Raman Spectroscopies. Journal of Physical Chemistry C, 2020, 124, 25578-25587.	3.1	4
25	Casting and inkjet printable photochromic films based on polymethylmethacrylate – Phosphotungstic acid. Optical Materials, 2019, 96, 109345.	3.6	4
26	Crystallization kinetics study of silver-doped germanium glasses. Thermochimica Acta, 2019, 673, 40-52.	2.7	4
27	Er3+-doped niobium alkali germanate glasses and glass-ceramics: NIR and visible luminescence properties. Journal of Non-Crystalline Solids, 2019, 521, 119492.	3.1	23
28	Photoluminescence of Ag+ and Agn+m in co-doped Pr3+/Yb3+ fluorophosphate glasses: tuning visible emission and energy transfer to Pr3+/Yb3+ ions through excitation in different silver species. Journal of Materials Science: Materials in Electronics, 2019, 30, 16878-16885.	2.2	6
29	Femtosecond laser micro-patterning of optical properties and functionalities in novel photosensitive silver-containing fluorophosphate glasses. Journal of Non-Crystalline Solids, 2019, 517, 51-56.	3.1	10
30	Application of Raman spectroscopy to industrial research: Determination of impurities in glass bottles. Vibrational Spectroscopy, 2019, 100, 57-63.	2.2	4
31	Glasses in the NaPO3-WO3-NaF ternary system: preparation, physical properties and structural studies. Journal of Non-Crystalline Solids, 2019, 505, 379-389.	3.1	17
32	Structural and EPR studies of Cu2+ ions in NaPO3 – Sb2O3 – CuO glasses. Journal of Non-Crystalline Solids, 2019, 503-504, 169-175.	3.1	13
33	Phosphate glasses <i>via</i> coacervation route containing CdFe ₂ O ₄ nanoparticles: structural, optical and magnetic characterization. Dalton Transactions, 2018, 47, 5771-5779.	3.3	14
34	A new SERS substrate based on niobium lead-pyrophosphate glasses obtained by Ag+/Na+ ion exchange. Sensors and Actuators B: Chemical, 2018, 277, 347-352.	7.8	13
35	Synthesis and structural characterization of a new SbPO4-GeO2 glass system. Journal of Non-Crystalline Solids, 2018, 500, 133-140.	3.1	10
36	SiO2-TiO2 doped with Er3+/Yb3+/Eu3+ photoluminescent material: A spectroscopy and structural study about potential application for improvement of the efficiency on solar cells. Materials Research Bulletin, 2018, 107, 295-307.	5.2	31

#	Article	IF	CITATIONS
37	Incorporation of CdFe2O4SiO2 nanoparticles in SbPO4-ZnO-PbO glasses by melting quenching process. Ecletica Quimica, 2018, 43, 32.	0.5	2
38	Photochromic dynamics of organic–inorganic hybrids supported on transparent and flexible recycled PET. Optical Materials, 2017, 66, 297-301.	3.6	14
39	Coupling between surface plasmon resonance and Sm3+ ions induced enhancement of luminescence properties in fluoro-tellurite glasses. Journal of Luminescence, 2017, 190, 518-524.	3.1	31
40	Optical sensor platform based on cellulose nanocrystals (CNC) – 4′-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films. Carbohydrate Polymers, 2017, 168, 346-355.	10.2	26
41	White light and multicolor emission tuning in Ag nanocluster doped fluorophosphate glasses. RSC Advances, 2017, 7, 44356-44365.	3.6	30
42	Highly luminescent silver nanocluster-doped fluorophosphate glasses for microfabrication of 3D waveguides. RSC Advances, 2017, 7, 55935-55944.	3.6	21
43	Glass formation in the Sb2O3-SbPO4-WO3 system. Ecletica Quimica, 2017, 42, 51.	0.5	11
44	Preparation and structural characterization of sodium polyphosphate coacervate as a precursor for optical materials. Materials Chemistry and Physics, 2016, 180, 114-121.	4.0	13
45	Highly nonlinear Pb2P2O7-Nb2O5 glasses for optical fiber production. Journal of Non-Crystalline Solids, 2016, 443, 82-90.	3.1	29
46	Visible up-conversion and near-infrared luminescence of Er3+/Yb3+ co-doped SbPO4-GeO2 glasses. Optical Materials, 2016, 57, 71-78.	3.6	20
47	Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend. Science of the Total Environment, 2016, 560-561, 179-185.	8.0	19
48	Structural investigation of nickel polyphosphate coacervate glass–ceramics. RSC Advances, 2016, 6, 91150-91156.	3.6	11
49	Dy3+/Tb3+-codoped tunable warm light-emitting fluorogermanate glass phosphor. Optical Engineering, 2016, 55, 117103.	1.0	5
50	Optical and structural properties of Mn2+ doped PbGeO3–SbPO4 glasses and glass–ceramics. Journal of Non-Crystalline Solids, 2016, 431, 135-139.	3.1	12
51	GLASSY MATERIALS AND LIGHT: PART 1. Quimica Nova, 2016, , .	0.3	0
52	GLASSY MATERIALS AND LIGHT: PART 2. Quimica Nova, 2016, , .	0.3	0
53	PWA-diureasils organic–inorganic hybrids. Photochromism and effect of the organic chain length. Optical Materials, 2015, 46, 64-69.	3.6	6
54	Biocellulose-based flexible magnetic paper. Journal of Applied Physics, 2015, 117, 17B734.	2.5	24

#	Article	IF	CITATIONS
55	Laser irradiation and thermal treatment inducing selective crystallization in Sb2O3–Sb2S3 glassy films. Physica B: Condensed Matter, 2015, 458, 67-72.	2.7	4
56	Optical and Structural Studies of Mn2+Doped SbPO4-ZnO-PbO Glasses. Journal of the Brazilian Chemical Society, 2015, , .	0.6	4
57	Picosecond nonlinearity of GeO2–Bi2O3–PbO–TiO2 glasses at 532 and 1,064Ânm. Applied Physics B: Lase and Optics, 2014, 117, 891-895.	rs 2.2	9
58	Nonlinear Optical Properties of Tungsten Lead–Pyrophosphate Glasses Containing Metallic Copper Nanoparticles. Plasmonics, 2013, 8, 1667-1674.	3.4	37
59	Self diffraction holographic techniques for investigation of photosensitive materials. , 2013, , .		2
60	Design and fabrication of two-dimensional hexagonal photonic crystals with a linear waveguide in erbium doped GeO2-Bi2O3-PbO-TiO2glasses. , 2013, , .		1
61	Glasses on the Nanoscale. , 2013, , 665-692.		3
62	Influência dos precursores de prata no crescimento de nanopartÃculas metálicas em vidros óxidos de metais pesados. Quimica Nova, 2013, 36, 967-971.	0.3	2
63	Preparação de vidros e vitrocerâmicas de óxidos de metais pesados contendo prata: propriedades ópticas, estruturais e eletroquÃmicas. Quimica Nova, 2012, 35, 755-761.	0.3	0
64	Structural and vibrational study of cubic Sb <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< td=""><td>3.2</td><td>71</td></mml:mrow<></mml:msub></mml:math </mml:math 	3.2	71
65	/> <mml:mn>3</mml:mn> under high pressure. Physical Review B, 2012, 85, . Observation of asymmetric spectrum broadening induced by silver nanoparticles in a heavy-metal oxide glass. Europhysics Letters, 2011, 94, 37011.	2.0	15
66	Experimental evidence of asymmetrical spectrum broadening in a heavy-metal oxide glass doped with silver nanoparticles. , 2011, , .		0
67	Thermo and photochromic properties of Na2O–WO3–SbPO4 glasses. Solid State Ionics, 2010, 181, 1125-1130.	2.7	7
68	Refractive index changes in photochromic SbPO4–WO3 glass by exposure to band-gap radiation. Journal of Non-Crystalline Solids, 2010, 356, 2360-2362.	3.1	6
69	Plasmonic structures fabricated by interference lithography for sensor applications. , 2009, , .		1
70	Measurement of phase and amplitude modulations in Sb-based films. , 2009, , .		1
71	Crystallization study of the (1â^'x)Sb2O3–(x)SbPO4 glass system. Materials Chemistry and Physics, 2008, 112, 1069-1073.	4.0	6
72	2D Photonic Crystal Layers in Antimony-based films. AIP Conference Proceedings, 2008, , .	0.4	0

#	Article	IF	CITATIONS
73	Two-dimensional photonic crystals in antimony-based films fabricated by holography. Journal of Applied Physics, 2008, 103, 106101.	2.5	3
74	Antimony Glasses with Large Nonlinear Refractive Indices, Small Two-Photon Absorption Coefficients and Ultrafast Response at Telecom Wavelengths. , 2007, , .		0
75	Glasses in the SbPO4–WO3 system. Journal of Non-Crystalline Solids, 2007, 353, 1592-1597.	3.1	30
76	Photochromic properties of tungstate-based glasses. Solid State Ionics, 2007, 178, 871-875.	2.7	37
77	Characterization of the reversible photoinduced optical changes in Sb-based glasses. Journal of Non-Crystalline Solids, 2006, 352, 3535-3539.	3.1	10
78	Nonlinear refractive index measurements in antimony–sulfide glass films using a single beam nonlinear image technique. Optics Communications, 2006, 260, 723-726.	2.1	12
79	Nonresonant third-order nonlinearity of antimony glasses at telecom wavelengths. Journal of Applied Physics, 2006, 100, 116105.	2.5	23
80	Bulk photochromism in a tungstate-phosphate glass: A new optical memory material?. Journal of Chemical Physics, 2006, 125, 161101.	3.0	60
81	Antimony orthophosphate glasses with large nonlinear refractive indices, low two-photon absorption coefficients, and ultrafast response. Journal of Applied Physics, 2005, 97, 013505.	2.5	29
82	Structural organization and thermal properties of the Sb2O3–SbPO4glass system. Journal of Materials Chemistry, 2004, 14, 3398-3405.	6.7	56
83	Ultrafast nonlinearity of antimony polyphosphate glasses. Applied Physics Letters, 2003, 83, 1292-1294.	3.3	40
84	Photoinduced structural changes in antimony polyphosphate based glasses. Journal of Non-Crystalline Solids, 2003, 330, 168-173.	3.1	14
85	Antimony based glasses for photonics ultrafast applications. , 2003, , MT12.		0
86	Scandium fluorophosphate glasses: a structural approach. Comptes Rendus Chimie, 2002, 5, 915-920.	0.5	16
87	Antimony oxide based glasses. Journal of Non-Crystalline Solids, 2001, 284, 110-116.	3.1	103
88	Glasses containing lutetium fluoride. , 1998, , .		0
89	Scandium fluorides. Journal of Alloys and Compounds, 1997, 262-263, 296-298.	5.5	6