
Samir Kamel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6210186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmaceutical significance of cellulose: A review. EXPRESS Polymer Letters, 2008, 2, 758-778.	1.1	360
2	Nanotechnology and its applications in lignocellulosic composites, a mini review. EXPRESS Polymer Letters, 2007, 1, 546-575.	1.1	227
3	Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. International Journal of Biological Macromolecules, 2015, 76, 25-32.	3.6	135
4	Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polymer Degradation and Stability, 2000, 70, 347-355.	2.7	119
5	Evaluation of corn husk fibers reinforced recycled low density polyethylene composites. Materials Chemistry and Physics, 2015, 152, 26-33.	2.0	106
6	Recent Advances in Cellulose-Based Biosensors for Medical Diagnosis. Biosensors, 2020, 10, 67.	2.3	102
7	Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. International Journal of Biological Macromolecules, 2018, 119, 207-214.	3.6	101
8	Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. Journal of Applied Polymer Science, 2006, 100, 329-334.	1.3	85
9	Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant. Biocatalysis and Agricultural Biotechnology, 2021, 35, 102083.	1.5	75
10	Morphological and antibacterial properties of modified paper by PS nanocomposites for packaging applications. Carbohydrate Polymers, 2013, 98, 1166-1172.	5.1	74
11	A novel electromagnetic biodegradable nanocomposite based on cellulose, polyaniline, and cobalt ferrite nanoparticles. Carbohydrate Polymers, 2019, 216, 54-62.	5.1	70
12	Development of microporous cellulose-based smart xerogel reversible sensor via freeze drying for naked-eye detection of ammonia gas. Carbohydrate Polymers, 2019, 210, 196-203.	5.1	65
13	Morphological, electrical & antibacterial properties of trilayered Cs/PAA/PPy bionanocomposites hydrogel based on Fe3O4-NPs. Carbohydrate Polymers, 2018, 196, 483-493.	5.1	64
14	Preparation and properties of composites made from rice straw and poly(vinyl chloride) (PVC). Polymers for Advanced Technologies, 2004, 15, 612-616.	1.6	56
15	Biological studies and electrical conductivity of paper sheet based on PANI/PS/Ag-NPs nanocomposite. Carbohydrate Polymers, 2016, 147, 333-343.	5.1	55
16	Smart microfibrillated cellulose as swab sponge-like aerogel for real-time colorimetric naked-eye sweat monitoring. Talanta, 2019, 205, 120166.	2.9	53
17	Development of electrically conductive nanocomposites from cellulose nanowhiskers, polypyrrole and silver nanoparticles assisted with Nickel(III) oxide nanoparticles. Reactive and Functional Polymers, 2020, 149, 104533.	2.0	51
18	Recent advances in cellulose supported metal nanoparticles as green and sustainable catalysis for organic synthesis. Cellulose, 2021, 28, 4545-4574.	2.4	50

#	Article	IF	CITATIONS
19	Biocompatible hydrogel based on aldehyde-functionalized cellulose and chitosan for potential control drug release. Sustainable Chemistry and Pharmacy, 2021, 21, 100419.	1.6	50
20	Carboxymethyl cellulose based hybrid material for sustained release of protein drugs. International Journal of Biological Macromolecules, 2016, 93, 1647-1652.	3.6	48
21	Development of Electrospun Nanofibrous-Walled Tubes for Potential Production of Photoluminescent Endoscopes. Industrial & Engineering Chemistry Research, 2021, 60, 10044-10055.	1.8	48
22	Structural and electrical properties of paper–polyaniline composite. Carbohydrate Polymers, 2012, 90, 1003-1007.	5.1	47
23	Biodegradable grafting cellulose/clay composites for metal ions removal. International Journal of Biological Macromolecules, 2018, 118, 2256-2264.	3.6	46
24	Photoluminescent spray-coated paper sheet: Write-in-the-dark. Carbohydrate Polymers, 2018, 200, 154-161.	5.1	45
25	Development of longâ€persistent photoluminescent epoxy resin immobilized with europium (II)â€doped strontium aluminate. Luminescence, 2020, 35, 478-485.	1.5	45
26	Carboxymethyl cellulose-hydrogel embedded with modified magnetite nanoparticles and porous carbon: Effective environmental adsorbent. Carbohydrate Polymers, 2020, 242, 116402.	5.1	43
27	Innovative synthesis of modified cellulose derivative as a uranium adsorbent from carbonate solutions of radioactive deposits. Cellulose, 2020, 27, 7093-7108.	2.4	39
28	THERMAL PROPERTIES OF CARBOXYMETHYL CELLULOSE ACETATE BUTYRATE. Cellulose Chemistry and Technology, 2019, 53, 667-675.	0.5	39
29	Mechanical and electrical properties of paper sheets treated with chitosan and its derivatives. Carbohydrate Polymers, 2006, 63, 113-121.	5.1	38
30	Novel cellulose-based halochromic test strips for naked-eye detection of alkaline vapors and analytes. Talanta, 2017, 170, 137-145.	2.9	38
31	Conducting cellulose/TiO 2 composites by in situ polymerization of pyrrole. Carbohydrate Polymers, 2017, 168, 182-190.	5.1	38
32	Rational design and electrical study of conducting bionanocomposites hydrogel based on chitosan and silver nanoparticles. International Journal of Biological Macromolecules, 2019, 140, 886-894.	3.6	38
33	Optical Recognition of Ammonia and Amine Vapor Using "Turn-on―Fluorescent Chitosan Nanoparticles Imprinted on Cellulose Strips. Journal of Fluorescence, 2019, 29, 693-702.	1.3	38
34	Carboxymethyl Cellulose-Based Hydrogel: Dielectric Study, Antimicrobial Activity and Biocompatibility. Arabian Journal for Science and Engineering, 2021, 46, 17-30.	1.7	38
35	A new approach for antimicrobial and antiviral activities of biocompatible nanocomposite based on cellulose, amino acid and graphene oxide. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112172.	2.5	37
36	In situ synthesis of Fe3O4@ cyanoethyl cellulose composite as antimicrobial and semiconducting film. Carbohydrate Polymers, 2020, 236, 116032.	5.1	36

#	Article	IF	CITATIONS
37	Studies of Polylactic Acid and Metal Oxide Nanoparticles-Based Composites for Multifunctional Textile Prints. Coatings, 2020, 10, 58.	1.2	36
38	Preparation and characterization of novel antibacterial blended films based on modified carboxymethyl cellulose/phenolic compounds. Polymer Bulletin, 2021, 78, 1061-1085.	1.7	36
39	Grafted TEMPO-oxidized cellulose nanofiber embedded with modified magnetite for effective adsorption of lead ions. International Journal of Biological Macromolecules, 2021, 167, 1091-1101.	3.6	36
40	Synthesis of novel heterocyclic compounds based on dialdehyde cellulose: characterization, antimicrobial, antitumor activity, molecular dynamics simulation and target identification. Cellulose, 2021, 28, 8355-8374.	2.4	35
41	Adsorption of Fe ions by modified carrageenan beads with tricarboxy cellulose: kinetics study and four isotherm models. , 0, 165, 281-289.		34
42	Development of electrical conducting nanocomposite based on carboxymethyl cellulose hydrogel/silver nanoparticles@polypyrrole. Synthetic Metals, 2019, 250, 104-114.	2.1	33
43	Antimicrobial cellulosic hydrogel from olive oil industrial residue. International Journal of Biological Macromolecules, 2018, 117, 179-188.	3.6	31
44	Carboxymethyl Cellulose-Grafted Graphene Oxide/Polyethylene Glycol for Efficient Ni(II) Adsorption. Journal of Polymers and the Environment, 2021, 29, 859-870.	2.4	31
45	Mechanical properties of the paper sheets treated with different polymers. Thermochimica Acta, 2004, 421, 81-85.	1.2	30
46	Synthesis and characterization of polyaniline/tosylcellulose stearate composites as promising semiconducting materials. Synthetic Metals, 2018, 236, 44-53.	2.1	30
47	Potential use of bagasse and modified bagasse for removing of iron and phenol from water. Carbohydrate Polymers, 2012, 88, 250-256.	5.1	27
48	Conducting hydrogel based on chitosan, polypyrrole and magnetite nanoparticles: a broadband dielectric spectroscopy study. Polymer Bulletin, 2019, 76, 3175-3194.	1.7	27
49	Development of biodegradable semiconducting foam based on micro-fibrillated cellulose/Cu-NPs. International Journal of Biological Macromolecules, 2019, 132, 351-359.	3.6	26
50	Rational design of novel water-soluble ampholytic cellulose derivatives. International Journal of Biological Macromolecules, 2018, 114, 363-372.	3.6	25
51	Carboxymethyl Cellulose Acetate Butyrate: A Review of the Preparations, Properties, and Applications. Journal of Drug Delivery, 2014, 2014, 1-6.	2.5	24
52	Cellulose nanocrystals decorated with gold nanoparticles immobilizing GOx enzyme for non-invasive biosensing of human salivary glucose. Analytical Methods, 2019, 11, 6073-6083.	1.3	24
53	FUNCTIONALIZATION AND CROSS-LINKING OF CARBOXYMETHYL CELLULOSE IN AQUEOUS MEDIA. Cellulose Chemistry and Technology, 2019, 53, 23-33.	0.5	24
54	Rapid synthesis of antimicrobial paper under microwave irradiation. Carbohydrate Polymers, 2012, 90, 1538-1542.	5.1	23

#	Article	IF	CITATIONS
55	Uniformly Embedded Cellulose/Polypyrrole-TiO2 Composite in Sol-Gel Sodium Silicate Nanoparticles: Structural and Dielectric Properties. Silicon, 2019, 11, 1063-1070.	1.8	23
56	Lignocellulosic polymer composite IV. Journal of Applied Polymer Science, 1998, 69, 845-855.	1.3	21
57	Multi-stage Bagasse pulping by using alkali/Caro's acid treatment. Industrial Crops and Products, 2005, 21, 337-341.	2.5	21
58	Talented Bi0.5Na0.25K0.25TiO3/oxidized cellulose films for optoelectronic and bioburden of pathogenic microbes. Carbohydrate Polymers, 2022, 291, 119656.	5.1	20
59	Cyanoethyl Cellulose/BaTiO ₃ /GO Flexible Films with Electroconductive Properties. ECS Journal of Solid State Science and Technology, 2021, 10, 083004.	0.9	19
60	Hydroxypropyl methylcellulose/graphene oxide composite as drug carrier system for 5â€fluorouracil. Biotechnology Journal, 2022, 17, e2100183.	1.8	19
61	Antimicrobial and antiviral activities with molecular docking study of chitosan/carrageenan@clove oil beads. Biotechnology Journal, 2022, 17, e2100298.	1.8	19
62	Optimization of Carboxymethylation of Starch in Organic Solvents. International Journal of Polymeric Materials and Polymeric Biomaterials, 2007, 56, 511-519.	1.8	18
63	New approach for immobilization of 3-aminopropyltrimethoxysilane and TiO2 nanoparticles into cellulose for BJ1 skin cells proliferation. Carbohydrate Polymers, 2018, 199, 193-204.	5.1	18
64	Preparation of eco-friendly graphene oxide from agricultural wastes for water treatment. , 0, 191, 250-262.		18
65	Development of carrageenan modified with nanocellulose-based materials in removing of Cu2+, Pb2+, Ca2+, Mg2+, and Fe2+. International Journal of Environmental Science and Technology, 2019, 16, 5569-5576.	1.8	17
66	Synthesis and characterization of biocompatible hydrogel based on hydroxyethyl cellulose-g-poly(hydroxyethyl methacrylate). Polymer Bulletin, 2020, 77, 6333-6347.	1.7	17
67	Efficient alternative of antimicrobial nanocomposites based on cellulose acetate/Cu-NPs. Soft Materials, 2018, 16, 141-150.	0.8	16
68	Advances in polysaccharide-based hydrogels: Self-healing and electrical conductivity. Journal of Molecular Liquids, 2022, 352, 118712.	2.3	15
69	Photocatalytic degradation of pesticide intermediate using green eco-friendly amino functionalized cellulose nanocomposites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115231.	1.7	14
70	Amphiphilic Cellulose as Stabilizer for Oil/ Water Emulsion. Egyptian Journal of Chemistry, 2017, 60, 181-204.	0.1	13
71	Development of graphene oxide-based styrene/acrylic elastomeric disks from sugarcane bagasse as adsorbents of Nickel (II) ions. Journal of Polymer Research, 2022, 29, 1.	1.2	13
72	Mechanical properties and water absorption of lowâ€density polyethylene/sawdust composites. Journal of Applied Polymer Science, 2008, 107, 1337-1342.	1.3	12

#	Article	IF	CITATIONS
73	High efficiency antimicrobial celluloseâ€based nanocomposite hydrogels. Journal of Applied Polymer Science, 2015, 132, .	1.3	11
74	Electroconductive Composites Containing Nanocellulose, Nanopolypyrrole, and Silver Nanoparticles. Journal of Renewable Materials, 2019, 7, 193-203.	1.1	11
75	Enhancing Electrical, Thermal, and Mechanical Properties of HV Cross-Linked Polyethylene Insulation Using Silica Nanofillers. Journal of Materials Engineering and Performance, 2021, 30, 1796-1807.	1.2	11
76	Preparation and characterization of Gum Arabic Schiff's bases based on 9-aminoacridine with in vitro evaluation of their antimicrobial and antitumor potentiality. Carbohydrate Polymers, 2022, 277, 118823.	5.1	11
77	Carboxymethylation of Cotton Linter in an Alcoholic Reaction Medium. International Journal of Polymeric Materials and Polymeric Biomaterials, 2001, 50, 163-173.	1.8	10
78	GRAPHENE OXIDE FUNCTIONALIZED BY ETHYLENE DIAMINE TETRAACETIC ACID (EDTA) BY A HYDROTHERMAL PROCESS AS AN ADSORBENT FOR NICKEL IONS. Cellulose Chemistry and Technology, 2021, 55, 417-432.	0.5	9
79	Preparation of Cation-Exchange Resin from Lignin. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 55, 283-291.	1.8	8
80	Hydrophobic and Flame-Retardant Foam Based on Cellulose. Journal of Polymers and the Environment, 2022, 30, 2366-2377.	2.4	8
81	Physicomechanical Properties of Paper Treated With Polymers. Restaurator, 2000, 21, .	0.2	7
82	Thermal and natural aging of bagasse paper sheets coated with gelatin. Nordic Pulp and Paper Research Journal, 2018, 33, 327-335.	0.3	7
83	A biodegradable film based on cellulose and thiazolidine bearing UV shielding property. Scientific Reports, 2022, 12, 7887.	1.6	7
84	Preparation and Characterization of Eco-friendly Carboxymethyl Cellulose Antimicrobial NanocompositeÂHydrogels. Journal of Renewable Materials, 2018, , .	1.1	6
85	Polyacetal/graphene/polypyrrole and cobalt nanoparticles electroconducting composites. International Journal of Industrial Chemistry, 2020, 11, 223-234.	3.1	4
86	EDTA-Functionalized Magnetic Graphene Oxide/Polyacrylamide Grafted Carboxymethyl Cellulose Hydrogel for Removal of Pb+2 from Aqueous Solution. Journal of Polymers and the Environment, 2022, 30, 1833-1846.	2.4	3
87	Development of Dielectric Film Based on Cellulose Loaded Nano-Silver and Carbon for Potential Energy Storage. ECS Journal of Solid State Science and Technology, 2021, 10, 123004.	0.9	3
88	Eco-friendly Mimosa Tannin Adhesive System for Bagasse Particleboard Fabrication. Egyptian Journal of Chemistry, 2018, .	0.1	0