Andraž Å uligoj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6210043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TiO2–SiO2 films from organic-free colloidal TiO2 anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air. Applied Catalysis B: Environmental, 2016, 184, 119-131.	20.2	115
2	Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catalysis Today, 2018, 310, 32-41.	4.4	89
3	Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 336, 89-97.	3.9	51
4	Surface modified titanium dioxide using transition metals: nickel as a winning transition metal for solar light photocatalysis. Journal of Materials Chemistry A, 2018, 6, 9882-9892.	10.3	43
5	Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites. Environmental Science and Pollution Research, 2016, 23, 17982-17994.	5.3	34
6	Bimetal Cu-Mn porous silica-supported catalyst for Fenton-like degradation of organic dyes in wastewater at neutral pH. Catalysis Today, 2020, 358, 270-277.	4.4	32
7	SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal from Wastewater under Solar Light. Catalysts, 2020, 10, 253.	3.5	25
8	Transparent Photocatalytic Thin Films on Flexible Polymer Substrates. Materials, 2018, 11, 1945.	2.9	21
9	Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate. Chemical Papers, 2014, 68, .	2.2	18
10	Synergism in TiO2 photocatalytic ozonation for the removal of dichloroacetic acid and thiacloprid. Environmental Research, 2021, 197, 110982.	7.5	17
11	Field Test of Self-Cleaning Zr-Modified-TiO2-SiO2 Films on Glass with a Demonstration of Their Anti-Fogging Effect. Materials, 2019, 12, 2196.	2.9	7
12	Evolution of Surface Catalytic Sites on Bimetal Silica-Based Fenton-Like Catalysts for Degradation of Dyes with Different Molecular Charges. Nanomaterials, 2020, 10, 2419.	4.1	6
13	Studies of Clinoptilolite-Rich Zeolitic Tuffs from Different Regions and Their Activity in Photodegradation of Methylene Blue. Catalysts, 2022, 12, 224.	3.5	5
14	Solution-derived photocatalytic films for environmental cleaning applications. IOP Conference Series: Materials Science and Engineering, 2012, 30, 012001.	0.6	2
15	Post-Excitation Transient IR Phenomena in α-Fe ₂ O ₃ Films. Journal of Physical Chemistry C, 2021, 125, 28013-28024.	3.1	2
16	TiO2/SiO2 Films for Removal of Volatile Organic Compounds (VOCs) from Indoor Air. , 2018, , 1-17.		1
17	A Special Section on Nanostructured Catalysts for Environmental Remediation. Journal of Nanoscience and Nanotechnology, 2020, 20, 5859-5860.	0.9	1
18	TiO2/SiO2 Films for Removal of Volatile Organic Compounds (VOCs) from Indoor Air. , 2019, , 589-605.		0