
T Richard Hull

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6209710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Critical Appraisal of the UK's Regulatory Regime for Combustible Façades. Fire Technology, 2021, 57, 261-290.	3.0	20
2	Burning behaviour of rainscreen façades. Journal of Hazardous Materials, 2021, 403, 123894.	12.4	8
3	Smoke toxicity of rainscreen façades. Journal of Hazardous Materials, 2021, 403, 123694.	12.4	7
4	Fire behaviour of modern façade materials – Understanding the Grenfell Tower fire. Journal of Hazardous Materials, 2019, 368, 115-123.	12.4	118
5	Authors' response to comments on "Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate― Chemosphere, 2019, 232, 512-515.	8.2	0
6	Fire Performance of Sandwich Panels in a Modified ISO 13784-1 Small Room Test: The Influence of Increased Fire Load for Different Insulation Materials. Fire Technology, 2018, 54, 819-852.	3.0	13
7	Influence of N-, P- and Si-based Flame Retardant Mixtures on Flammability, Thermal Behavior and Mechanical Properties of PA6 Composite Fibers. Fibers and Polymers, 2018, 19, 1194-1206.	2.1	11
8	A novel oligomer containing DOPO and ferrocene groups: Synthesis, characterization, and its application in fire retardant epoxy resin. Polymer Degradation and Stability, 2018, 156, 111-124.	5.8	63
9	Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate. Chemosphere, 2018, 196, 429-439.	8.2	42
10	Dual Fire Retardant Action: The Combined Gas and Condensed Phase Effects of Azo-Modified NiZnAl Layered Double Hydroxide on Intumescent Polypropylene. Industrial & Engineering Chemistry Research, 2017, 56, 920-932.	3.7	46
11	Asphyxiant yields from common polymers in under-ventilated fires in the large instrumented fire enclosure (LIFE). Fire Safety Journal, 2017, 91, 982-988.	3.1	5
12	Mechanism of enhancement of intumescent fire retardancy by metal acetates in polypropylene. Polymer Degradation and Stability, 2017, 136, 139-145.	5.8	43
13	Ferrocene-Based Nonphosphorus Copolymer: Synthesis, High-Charring Mechanism, and Its Application in Fire Retardant Epoxy Resin. Industrial & Engineering Chemistry Research, 2017, 56, 12630-12643.	3.7	27
14	Quantification of toxic hazard from fires in buildings. Journal of Building Engineering, 2016, 8, 313-318.	3.4	15
15	An experimental and numerical model for the release of acetone from decomposing EVA containing aluminium, magnesium or calcium hydroxide fire retardants. Polymer Degradation and Stability, 2016, 127, 65-78.	5.8	23
16	Thermal Decomposition of Polymeric Materials. , 2016, , 167-254.		32
17	Mineral Filler Fire Retardants. , 2016, , 1-26.		0
18	Investigation of thermal decomposition of polymer nanocomposites with different char residues. Polymers for Advanced Technologies, 2015, 26, 1027-1033.	3.2	9

#	Article	IF	CITATIONS
19	The influence of carbon nanotubes on the combustion toxicity of PP/intumescent flame retardant composites. Polymer Degradation and Stability, 2015, 115, 38-44.	5.8	47
20	Development of an anaerobic pyrolysis model for fire retardant cable sheathing materials. Polymer Degradation and Stability, 2015, 113, 208-217.	5.8	25
21	Synthesis of Zinc Phosphonated Poly(ethylene imine) and Its Fire-Retardant Effect in Low-Density Polyethylene. Industrial & Engineering Chemistry Research, 2015, 54, 3247-3256.	3.7	36
22	Self-Assembly Fabrication of Hollow Mesoporous Silica@Co–Al Layered Double Hydroxide@Graphene and Application in Toxic Effluents Elimination. ACS Applied Materials & Interfaces, 2015, 7, 8506-8514.	8.0	48
23	Flame retardant polystyrene copolymers: preparation, thermal properties, and fire toxicities. Polymers for Advanced Technologies, 2014, 25, 631-637.	3.2	29
24	Combustion and <scp>T</scp> oxic <scp>G</scp> as <scp>P</scp> roduction from <scp>D</scp> isposable <scp>B</scp> arbecues in <scp>E</scp> nclosures. Journal of Forensic Sciences, 2014, 59, 127-138.	1.6	3
25	Experimental Results of a Residential House Fire Test on Tenability: Temperature, Smoke, and Gas Analyses. Journal of Forensic Sciences, 2014, 59, 139-154.	1.6	24
26	Enhanced mechanical, thermal and flame retardant properties by combining graphene nanosheets and metal hydroxide nanorods for Acrylonitrile–Butadiene–Styrene copolymer composite. Composites Part A: Applied Science and Manufacturing, 2014, 64, 203-210.	7.6	91
27	Effect of Functionalized Graphene Oxide with Hyper-Branched Flame Retardant on Flammability and Thermal Stability of Cross-Linked Polyethylene. Industrial & Engineering Chemistry Research, 2014, 53, 3073-3083.	3.7	64
28	Synthesis of Mesoporous Silica@Co–Al Layered Double Hydroxide Spheres: Layer-by-Layer Method and Their Effects on the Flame Retardancy of Epoxy Resins. ACS Applied Materials & Interfaces, 2014, 6, 14076-14086.	8.0	143
29	Fabrication of Ce-doped MnO ₂ decorated graphene sheets for fire safety applications of epoxy composites: flame retardancy, smoke suppression and mechanism. Journal of Materials Chemistry A, 2014, 2, 17341-17351.	10.3	78
30	Effect of Functionalized Graphene Oxide with Hyper-Branched Flame Retardant on Flammability and Thermal Stability of Cross-Linked Polyethylene. Industrial & Engineering Chemistry Research, 2014, 53, 5622-5622.	3.7	4
31	Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly(methyl methacrylate). Materials Research Bulletin, 2014, 49, 657-664.	5.2	82
32	The effect of gas phase flame retardants on fire effluent toxicity. Polymer Degradation and Stability, 2014, 106, 36-46.	5.8	54
33	Repeatability and reproducibility of the ISO/TS 19700 steady state tube furnace. Fire Safety Journal, 2013, 55, 22-34.	3.1	22
34	Facile preparation of graphene supported Co3O4 and NiO for reducing fire hazards of polyamide 6 composites. Materials Chemistry and Physics, 2013, 142, 531-538.	4.0	59
35	Fire Retardancy of Mineral Fillers in EVA Copolymers. ACS Symposium Series, 2012, , 97-111.	0.5	7
36	Flammability properties of PEEK and carbon nanotube composites. Polymer Degradation and Stability, 2012, 97, 2492-2502.	5.8	39

#	Article	IF	CITATIONS
37	The influence of metal hydroxide fire retardants and nanoclay on the thermal decomposition of EVA. Polymer Degradation and Stability, 2012, 97, 2231-2240.	5.8	53
38	PEEK polymer flammability and the inadequacy of the ULâ€94 classification. Fire and Materials, 2012, 36, 185-201.	2.0	23
39	Sources of variability in fire test data: A case study on poly(aryl ether ether ketone) (PEEK). Combustion and Flame, 2012, 159, 1720-1731.	5.2	38
40	The thermal decomposition of natural mixtures of huntite and hydromagnesite. Thermochimica Acta, 2012, 528, 45-52.	2.7	52
41	A review of candidate fire retardants for polyisoprene. Polymer Degradation and Stability, 2012, 97, 201-213.	5.8	43
42	The fire retardant effects of huntite in natural mixtures with hydromagnesite. Polymer Degradation and Stability, 2012, 97, 504-512.	5.8	47
43	Influence of physical properties on polymer flammability in the cone calorimeter. Polymers for Advanced Technologies, 2011, 22, 1100-1107.	3.2	47
44	Assessment of the fire toxicity of building insulation materials. Energy and Buildings, 2011, 43, 498-506.	6.7	177
45	Investigation of the thermal decomposition and flammability of PEEK and its carbon and glass-fibre composites. Polymer Degradation and Stability, 2011, 96, 12-22.	5.8	107
46	Fire retardant action of mineral fillers. Polymer Degradation and Stability, 2011, 96, 1462-1469.	5.8	260
47	Carbon Monoxide Generation in Fires: Effect of Temperature on Halogenated and Aromatic Fuels. Fire Safety Science, 2011, 10, 253-263.	0.3	9
48	Fire scenarios and combustion conditions. , 2010, , 26-47.		8
49	Effects of the material and fire conditions on toxic product yields. , 2010, , 515-540.		7
50	Bench-scale generation of fire effluents. , 2010, , 424-460.		5
51	Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies. Polymer Degradation and Stability, 2010, 95, 709-718.	5.8	271
52	Cone calorimetry studies of fire retardant soybean-oil-based copolymers containing silicon or boron: Comparison of additive and reactive approaches. Polymer Degradation and Stability, 2010, 95, 1269-1274.	5.8	78
53	The fire retardant behaviour of huntite and hydromagnesite – A review. Polymer Degradation and Stability, 2010, 95, 2213-2225.	5.8	123
54	The thermal decomposition of huntite and hydromagnesite—A review. Thermochimica Acta, 2010, 509, 1-11.	2.7	203

#	Article	IF	CITATIONS
55	Introduction to fire toxicity. , 2010, , 3-25.		12
56	An international standardised framework for prediction of fire gas toxicity. , 2010, , 583-603.		0
57	Fire toxicity. , 2010, , .		47
58	Comparison of toxic product yields from bench-scale to ISO room. Fire Safety Journal, 2009, 44, 62-70.	3.1	33
59	Double In Situ Approach for the Preparation of Polymer Nanocomposite with Multi-functionality. Nanoscale Research Letters, 2009, 4, 303-306.	5.7	21
60	Preparation and characterisation of a novel fire retardant PET/α-zirconium phosphate nanocomposite. Polymer Degradation and Stability, 2009, 94, 544-549.	5.8	99
61	Effects of Fire Retardants and Nanofillers on the Fire Toxicity. ACS Symposium Series, 2009, , 342-366.	0.5	7
62	Fire-Retardant Mechanism of Acrylonitrile Copolymers Containing Nanoclay. ACS Symposium Series, 2009, , 118-147.	0.5	0
63	Fire Retardant Effects of Polymer Nanocomposites. Journal of Nanoscience and Nanotechnology, 2009, 9, 4478-4486.	0.9	28
64	Effect of metal chelates on the ignition and early flaming behaviour of intumescent fire-retarded polyethylene systems. Polymer Degradation and Stability, 2008, 93, 1024-1030.	5.8	87
65	Thermal behavior of covalently bonded phosphonate flame-retarded poly(methyl methacrylate) systems. Polymers for Advanced Technologies, 2008, 19, 710-723.	3.2	37
66	The effect of temperature and ventilation condition on the toxic product yields from burning polymers. Fire and Materials, 2008, 32, 49-60.	2.0	68
67	Effect of different compatibilisers on nanoclay dispersion, thermal stability, and burning behavior of polypropylene–nanoclay blends. Journal of Applied Polymer Science, 2008, 108, 816-824.	2.6	43
68	Characterisation of the steady state tube furnace (ISO TS 19700) for fire toxicity assessment. Polymer Degradation and Stability, 2008, 93, 2058-2065.	5.8	48
69	FRPM'07 special edition. Polymer Degradation and Stability, 2008, 93, 1985.	5.8	0
70	Characterisation of the dispersion in polymer flame retarded nanocomposites. European Polymer Journal, 2008, 44, 1631-1641.	5.4	68
71	Fire smoke toxicity: The effect of nitrogen oxides. Fire Safety Journal, 2008, 43, 243-251.	3.1	37
72	Crossed characterisation of polymer-layered silicate (PLS) nanocomposite morphology: TEM, X-ray diffraction, rheology and solid-state nuclear magnetic resonance measurements. European Polymer Journal, 2008, 44, 1642-1653.	5.4	50

#	Article	IF	CITATIONS
73	Comparison of toxic product yields of burning cables in bench and large-scale experiments. Fire Safety Journal, 2008, 43, 140-150.	3.1	36
74	Challenges in fire testing: reaction to fire tests and assessment of fire toxicity. , 2008, , 255-290.		6
75	A Comparison of Toxic Product Yields Obtained From Five Laboratories Using the Steady State Tube Furnace (ISO TS 19700). Fire Safety Science, 2008, 9, 653-664.	0.3	10
76	Hydrogen Chloride in Fires. Fire Safety Science, 2008, 9, 665-676.	0.3	22
77	Polypropylene fibers containing dispersed clays having improved fire performance. I. Effect of nanoclays on processing parameters and fiber properties. Journal of Applied Polymer Science, 2007, 106, 1707-1717.	2.6	54
78	Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire and Materials, 2007, 31, 327-354.	2.0	1,162
79	Thermal degradation analysis and XRD characterisation of fibre-forming synthetic polypropylene containing nanoclay. Polymer Degradation and Stability, 2007, 92, 727-732.	5.8	52
80	Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems. Polymer Degradation and Stability, 2007, 92, 1101-1114.	5.8	101
81	Factors affecting the combustion toxicity of polymeric materials. Polymer Degradation and Stability, 2007, 92, 2239-2246.	5.8	60
82	Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates. Polymer Degradation and Stability, 2007, 92, 1592-1598.	5.8	157
83	Lamellar hybrid from octa(γ-chloroaminopropyl) polyhedral oligomeric silsesquioxanes and anionic surfactant by ion-exchange reaction. Materials Letters, 2007, 61, 1077-1081.	2.6	13
84	Combustion and thermal properties of OctaTMA-POSS/PS composites. Journal of Materials Science, 2007, 42, 4325-4333.	3.7	59
85	Bench-scale assessment of combustion toxicity—A critical analysis of current protocols. Fire Safety Journal, 2007, 42, 340-365.	3.1	51
86	Flammability, degradation and structural characterization of fibre-forming polypropylene containing nanoclay–flame retardant combinations. Polymer Degradation and Stability, 2006, 91, 719-725.	5.8	83
87	Products of Rigid PVC Burning under Various Fire Conditions. ACS Symposium Series, 2005, , 334-347.	0.5	5
88	Cone calorimetry studies of polymer systems flame retarded by chemically bonded phosphorus. Polymer Degradation and Stability, 2005, 88, 74-79.	5.8	67
89	Effect of stabilisers and lubricant on the thermal decomposition of chlorinated poly(vinyl chloride) (CPVC). Polymer Degradation and Stability, 2005, 88, 41-45.	5.8	19
90	Methodology for Small-Scale Toxic Hazard Assessment of Burning Cables. ACS Symposium Series, 2005, , 348-363.	0.5	3

#	Article	IF	CITATIONS
91	Effect of plasticizers on the thermal decomposition of chlorinated polyvinylchloride. Journal of Vinyl and Additive Technology, 2005, 11, 21-27.	3.4	8
92	An investigation into the decomposition and burning behaviour of Ethylene-vinyl acetate copolymer nanocomposite materials. Polymer Degradation and Stability, 2003, 82, 365-371.	5.8	98
93	Thermal decomposition of chlorinated poly(vinyl chloride) (CPVC). Journal of Vinyl and Additive Technology, 2003, 9, 116-126.	3.4	38
94	Burning behaviour of foam/cotton fabric combinations in the cone calorimeter. Polymer Degradation and Stability, 2002, 77, 213-220.	5.8	47
95	Flame retardance of poly(methyl methacrylate) modified with phosphorus-containing compounds. Polymer Degradation and Stability, 2002, 77, 227-233.	5.8	142
96	Combustion toxicity of fire retarded EVA. Polymer Degradation and Stability, 2002, 77, 235-242.	5.8	76
97	Flame retarding poly(methyl methacrylate) with phosphorus-containing compounds: comparison of an additive with a reactive approach. Polymer Degradation and Stability, 2001, 74, 441-447.	5.8	79
98	Burning behaviour of fabric/polyurethane foam combinations in the cone calorimeter. Polymer International, 2000, 49, 1153-1157.	3.1	18
99	lgnition temperatures and pyrolysis of a flame-retardant methyl methacrylate copolymer containing diethyl(methacryloyloxymethyl)-phosphonate units. Polymer International, 2000, 49, 1164-1168.	3.1	40
100	Decomposition and combustion of EVA and LDPE alone and when fire retarded with ATH. Polymer International, 2000, 49, 1193-1198.	3.1	40
101	Experimental parameters affecting the performance of the Purser furnace: a laboratory-scale experiment for a range of controlled real fire conditions. Polymer International, 2000, 49, 1256-1258.	3.1	14
102	Prediction of CO evolution from small-scale polymer fires. Polymer International, 2000, 49, 1259-1265.	3.1	50
103	Thermal degradation and flame retardance in copolymers of methyl methacrylate with diethyl(methacryloyloxymethyl)phosphonate. Polymer Degradation and Stability, 2000, 70, 425-436.	5.8	80
104	Prediction of CO evolution from smallâ€scale polymer fires. Polymer International, 2000, 49, 1259-1265.	3.1	1
105	Chapter 25. Assessment of Fire Toxicity from Polymer Nanocomposites. , 0, , 405-417.		2