
Yunliu Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6209371/publications.pdf Version: 2024-02-01

YUNUU ZENC

#	Article	IF	CITATIONS
1	Cytological and proteomic evidence reveals the involvement of mitochondria in hypoxia-induced quality degradation in postharvest citrus fruit. Food Chemistry, 2022, 375, 131833.	8.2	9
2	Chlorophyll retention reduces storability and pathogen defense in a novel citrus brown flavedo mutant. Postharvest Biology and Technology, 2022, 192, 112006.	6.0	5
3	Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit. Horticulture Research, 2021, 8, 31.	6.3	12
4	The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato. Nature Plants, 2021, 7, 655-666.	9.3	51
5	Chinese horticulture: From basic research to industrial applications. New Zealand Journal of Crop and Horticultural Science, 2021, 49, 75-77.	1.3	0
6	Regulation of carotenoid and chlorophyll pools in hesperidia, anatomically unique fruits found only in <i>Citrus</i> . Plant Physiology, 2021, 187, 829-845.	4.8	29
7	Red light-induced kumquat fruit coloration is attributable to increased carotenoid metabolism regulated by FcrNAC22. Journal of Experimental Botany, 2021, 72, 6274-6290.	4.8	42
8	TPS-b family genes involved in signature aroma terpenes emission in ripe kiwifruit. Plant Signaling and Behavior, 2021, 16, 1962657.	2.4	5
9	A NAC transcription factor and its interaction protein hinder abscisic acid biosynthesis by synergistically repressing NCED5 in Citrus reticulata. Journal of Experimental Botany, 2020, 71, 3613-3625.	4.8	39
10	Sensory-Directed Genetic and Biochemical Characterization of Volatile Terpene Production in Kiwifruit. Plant Physiology, 2020, 183, 51-66.	4.8	19
11	Identification of Key Residues Required for RNA Silencing Suppressor Activity of p23 Protein from a Mild Strain of Citrus Tristeza Virus. Viruses, 2019, 11, 782.	3.3	6
12	Natural Variation in CCD4 Promoter Underpins Species-Specific Evolution of Red Coloration in Citrus Peel. Molecular Plant, 2019, 12, 1294-1307.	8.3	102
13	Investigation of chromoplast ultrastructure and tissue-specific accumulation of carotenoids in citrus flesh. Scientia Horticulturae, 2019, 256, 108547.	3.6	15
14	Fatty acid metabolic flux and lipid peroxidation homeostasis maintain the biomembrane stability to improve citrus fruit storage performance. Food Chemistry, 2019, 292, 314-324.	8.2	33
15	A comprehensive proteomic analysis of elaioplasts from citrus fruits reveals insights into elaioplast biogenesis and function. Horticulture Research, 2018, 5, 6.	6.3	21
16	Integrated transcriptomic and metabolomic analyses of a wax deficient citrus mutant exhibiting jasmonic acid-mediated defense against fungal pathogens. Horticulture Research, 2018, 5, 43.	6.3	49
17	GABA Pathway Rate-Limit Citrate Degradation in Postharvest Citrus Fruit Evidence from HB Pumelo (<i>Citrus grandis</i>) Ä— Fairchild (<i>Citrus reticulata</i>) Hybrid Population. Journal of Agricultural and Food Chemistry, 2017, 65, 1669-1676.	5.2	47
18	An R2R3â€MYB transcription factor represses the transformation of α―and βâ€branch carotenoids by negatively regulating expression of <i>CrBCH2</i> and <i>CrNCED5</i> in flavedo of <i>Citrus reticulate</i> . New Phytologist, 2017, 216, 178-192.	7.3	145

#	Article	IF	CITATIONS
19	Exogenous Î ³ -aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chemistry, 2017, 216, 138-145.	8.2	115
20	Salicylic acid treatment reduces the rot of postharvest citrus fruit by inducing the accumulation of H2O2, primary metabolites and lipophilic polymethoxylated flavones. Food Chemistry, 2016, 207, 68-74.	8.2	61
21	Plastids and Carotenoid Accumulation. Sub-Cellular Biochemistry, 2016, 79, 273-293.	2.4	35
22	Regulation of cuticle formation during fruit development and ripening in â€~Newhall' navel orange () Tj ETQq0 131-144.	0 0 rgBT 3.6	Overlock 10 100
23	Sweating treatment enhances citrus fruit disease resistance by inducing the accumulation of amino acida €induced resistance pathway. Physiologia Plantarum, 2015, 155, 109-125.	5.2	18
24	A Comprehensive Analysis of Chromoplast Differentiation Reveals Complex Protein Changes Associated with Plastoglobule Biogenesis and Remodeling of Protein Systems in Sweet Orange Flesh. Plant Physiology, 2015, 168, 1648-1665.	4.8	43
25	Network Analysis of Postharvest Senescence Process in Citrus Fruits Revealed by Transcriptomic and Metabolomic Profiling. Plant Physiology, 2015, 168, 357-376.	4.8	96
26	Distinct Carotenoid and Flavonoid Accumulation in a Spontaneous Mutant of Ponkan (<i>Citrus) Tj ETQq0 0 0 rgE Agricultural and Food Chemistry, 2015, 63, 8601-8614.</i>	3T /Overloo 5.2	ck 10 Tf 50 4 37
27	Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. Physiologia Plantarum, 2014, 150, 252-270.	5.2	20

A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck]. Journal of Experimental Botany, 2011, 62, 5297-5309.