Ender Yildirim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6209140/publications.pdf

Version: 2024-02-01

24 papers 291 citations

759233 12 h-index 17 g-index

24 all docs

24 docs citations

times ranked

24

370 citing authors

#	Article	IF	CITATIONS
1	A normally closed electrostatic parylene microvalve for micro total analysis systems. Sensors and Actuators A: Physical, 2012, 181, 81-86.	4.1	41
2	A capillary driven microfluidic chip for SERS based hCG detection. Biosensors and Bioelectronics, 2022, 195, 113660.	10.1	35
3	Phaseguides as tunable passive microvalves for liquid routing in complex microfluidic networks. Lab on A Chip, 2014, 14, 3334.	6.0	24
4	Investigation on replication of microfluidic channels by hot embossing. Materials and Manufacturing Processes, 2017, 32, 1838-1844.	4.7	22
5	Phaseguide assisted liquid lamination for magnetic particle-based assays. Lab on A Chip, 2014, 14, 2334-2343.	6.0	20
6	SERS-based ultrafast and sensitive detection of luteinizing hormone in human serum using a passive microchip. Sensors and Actuators B: Chemical, 2018, 269, 314-321.	7.8	20
7	Electrostatic energy harvesting by droplet-based multi-phase microfluidics. Microfluidics and Nanofluidics, 2012, 13, 107-111.	2.2	17
8	Fast fluorometric enumeration of E. coli using passive chip. Journal of Microbiological Methods, 2019, 164, 105680.	1.6	13
9	Analysis and characterization of an electrostatically actuated in-plane parylene microvalve. Journal of Micromechanics and Microengineering, 2011, 21, 105009.	2.6	12
10	Multiplex enumeration of <i>Escherichia coli </i> and <i> Salmonella enteritidis </i> in a passive capillary microfluidic chip. Analytical Methods, 2020, 12, 3788-3796.	2.7	12
11	Modeling and fabrication of electrostatically actuated diaphragms for on-chip valving of MEMS-compatible microfluidic systems. Journal of Micromechanics and Microengineering, 2020, 30, 115001.	2.6	12
12	Low-Cost Microfabrication Tool Box. Micromachines, 2020, 11, 135.	2.9	12
13	Numerical study on effects of computational domain length on flow field in standing wave thermoacoustic couple. Cryogenics, 2019, 98, 139-147.	1.7	11
14	Investigation of process-affected zone in ultrasonic embossing of microchannels on thermoplastic substrates. Journal of Manufacturing Processes, 2020, 50, 394-402.	5.9	10
15	Implementation and characterization of an absorption filter for on-chip fluorescent imaging. Sensors and Actuators B: Chemical, 2017, 242, 318-323.	7.8	9
16	Analysis and testing of a contraction-and-expansion micromixer for micromilled microfluidics. Microsystem Technologies, 2017, 23, 4797-4804.	2.0	4
17	A novel zero-dead-volume sample loading interface for microfluidic devices: flexible hydraulic reservoir (FHR). Journal of Micromechanics and Microengineering, 2018, 28, 097001.	2.6	4
18	A Novel Microfluidic Method Utilizing a Hydrofoil Structure to Improve Circulating Tumor Cell Enrichment: Design and Analytical Validation. Micromachines, 2020, 11, 981.	2.9	4

#	Article	IF	CITATIONS
19	A microfluidic device enabling drug resistance analysis of leukemia cells via coupled dielectrophoretic detection and impedimetric counting. Scientific Reports, 2021, 11, 13193.	3.3	4
20	Flow rate-controlled pipetting for microfluidics: second-generation flexible hydraulic reservoir (FHRv2). Microfluidics and Nanofluidics, 2021, 25, 1.	2.2	3
21	An electrostatically actuated parylene microvalve for lab-on-a-chip applications. , 2011, , .		1
22	Development of a microfluidic platform to maintain viability of micro-dissected tumor slices in culture. Biomicrofluidics, 2022, 16, 034103.	2.4	1
23	Fluorescent on-chip imager by using a tunable absorption filter. , 2017, , .		0
24	Lab on a chip: A versatile integration with spectroscopic techniques. , 2020, , 139-152.		0