Jacques C Finlay

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6208884/jacques-c-finlay-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

124
papers6,544
citations48
h-index78
g-index129
ext. papers7,552
ext. citations7.4
avg, IF6.1
L-index

#	Paper	IF	Citations
124	Hydrologic processes regulate nutrient retention in stormwater detention ponds <i>Science of the Total Environment</i> , 2022 , 153722	10.2	O
123	Superlinear scaling of riverine biogeochemical function with watershed size <i>Nature Communications</i> , 2022 , 13, 1230	17.4	1
122	Longitudinal patterns and linkages in benthic fine particulate organic matter composition, respiration, and nutrient uptake. <i>Limnology and Oceanography</i> , 2021 , 66, 2684-2696	4.8	1
121	Integrated assessment modeling reveals near-channel management as cost-effective to improve water quality in agricultural watersheds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	6
120	Long-term water color and flow trends in the Mississippi River Headwaters, 1944\(\mathbb{Q}\)010. <i>Limnology and Oceanography</i> , 2021 , 66, 3552-3567	4.8	O
119	Internal loading in stormwater ponds as a phosphorus source to downstream waters. <i>Limnology and Oceanography Letters</i> , 2020 , 5, 322-330	7.9	10
118	Prediction of Photochemically Produced Reactive Intermediates in Surface Waters via Satellite Remote Sensing. <i>Environmental Science & Environmental &</i>	10.3	18
117	Combined use of radiocarbon and stable carbon isotopes for the source mixing model in a stream food web. <i>Limnology and Oceanography</i> , 2020 , 65, 2688-2696	4.8	3
116	Partial migration alters population ecology and food chain length: evidence from a salmonid fish. <i>Ecosphere</i> , 2020 , 11, e03044	3.1	6
115	It Is Not Easy Being Green: Recognizing Unintended Consequences of Green Stormwater Infrastructure. <i>Water (Switzerland)</i> , 2020 , 12, 522	3	26
114	Co-limitation by N and P Characterizes Phytoplankton Communities Across Nutrient Availability and Land Use. <i>Ecosystems</i> , 2020 , 23, 1121-1137	3.9	2
113	Vegetation trajectories of restored agricultural wetlands following sediment removal. <i>Restoration Ecology</i> , 2020 , 28, 612-622	3.1	2
112	Regional measurements and spatial/temporal analysis of CDOM in 10,000+ optically variable Minnesota lakes using Landsat 8 imagery. <i>Science of the Total Environment</i> , 2020 , 724, 138141	10.2	16
111	Road dust biases NDVI and alters edaphic properties in Alaskan arctic tundra. <i>Scientific Reports</i> , 2019 , 9, 214	4.9	6
110	Unprocessed Atmospheric Nitrate in Waters of the Northern Forest Region in the U.S. and Canada. <i>Environmental Science & Discounty (Common Service Science & Common Service Science & Common Service Science & Common Service Science & Common Service Service</i>	10.3	19
109	The Power of Environmental Observatories for Advancing Multidisciplinary Research, Outreach, and Decision Support: The Case of the Minnesota River Basin. <i>Water Resources Research</i> , 2019 , 55, 3576	5-3 5 92	5
108	Iron influence on dissolved color in lakes of the Upper Great Lakes States. <i>PLoS ONE</i> , 2019 , 14, e021197	79 3.7	7

107	Controls of Methylmercury Bioaccumulation in Forest Floor Food Webs. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	15
106	Color, chlorophyll a, and suspended solids effects on Secchi depth in lakes: implications for trophic state assessment. <i>Ecological Applications</i> , 2019 , 29, e01871	4.9	32
105	Phosphorus Transport in Intensively Managed Watersheds. Water Resources Research, 2019, 55, 9148-91	3 4	17
104	Quantifying cryptic function loss during community disassembly. <i>Journal of Applied Ecology</i> , 2019 , 56, 2710-2722	5.8	3
103	Fertilizer, landscape features and climate regulate phosphorus retention and river export in diverse Midwestern watersheds. <i>Biogeochemistry</i> , 2019 , 146, 293-309	3.8	10
102	The effects of infiltration-based stormwater best management practices on the hydrology and phosphorus budget of a eutrophic urban lake. <i>Lake and Reservoir Management</i> , 2019 , 35, 38-50	1.3	4
101	Social-ecological and technological factors moderate the value of urban nature. <i>Nature Sustainability</i> , 2019 , 2, 29-38	22.1	163
100	Contribution of wetlands to nitrate removal at the watershed scale. <i>Nature Geoscience</i> , 2018 , 11, 127-13	3 2 8.3	101
99	Contextualizing Wetlands Within a River Network to Assess Nitrate Removal and Inform Watershed Management. <i>Water Resources Research</i> , 2018 , 54, 1312-1337	5.4	24
98	Limitations on using CDOM as a proxy for DOC in temperate lakes. Water Research, 2018, 144, 719-727	12.5	24
97	Metapopulation stability in branching river networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E5963-E5969	11.5	45
96	Uniform shrub growth response to June temperature across the North Slope of Alaska. <i>Environmental Research Letters</i> , 2018 , 13, 044013	6.2	20
95	Global dataset for carbon and nitrogen stable isotope ratios of lotic periphyton. <i>Ecological Research</i> , 2018 , 33, 1089-1089	1.9	2
94	Effects of the hippopotamus on the chemistry and ecology of a changing watershed. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E5028-E5037	11.5	31
93	Brown trout (Salmo trutta) growth and condition along a winter thermal gradient in temperate streams. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2017 , 74, 56-64	2.4	6
92	Flow-related dynamics in suspended algal biomass and its contribution to suspended particulate matter in an agricultural river network of the Minnesota River Basin, USA. <i>Hydrobiologia</i> , 2017 , 785, 127-	-1:47	13
91	Contribution of Leaf Litter to Nutrient Export during Winter Months in an Urban Residential Watershed. <i>Environmental Science & Environmental Science </i>	10.3	34
90	Arctic shrub growth trajectories differ across soil moisture levels. <i>Global Change Biology</i> , 2017 , 23, 4294	- 4 3.02	57

89	Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 4177-4182	11.5	172
88	Stable Isotopes in Stream Food Webs 2017 , 3-20		5
87	Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 9569-9579	10.3	43
86	Comment on Illimate and agricultural land use change impacts on streamflow in the upper midwestern United StatesIby Satish C. Gupta et al <i>Water Resources Research</i> , 2016 , 52, 7536-7539	5.4	9
85	Do wetlands enhance downstream denitrification in agricultural landscapes?. <i>Ecosphere</i> , 2016 , 7, e0151	163.1	23
84	Large differences in potential denitrification and sediment microbial communities across the Laurentian great lakes. <i>Biogeochemistry</i> , 2016 , 128, 353-368	3.8	27
83	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. <i>Environmental Research Letters</i> , 2016 , 11, 034014	6.2	165
82	Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. <i>Remote Sensing of Environment</i> , 2016 , 185, 119-128	13.2	119
81	Nitrogen cycling in a freshwater estuary. <i>Biogeochemistry</i> , 2016 , 127, 199-216	3.8	19
80	Large eddy simulation of turbulence and solute transport in a forested headwater stream. <i>Journal of Geophysical Research F: Earth Surface</i> , 2016 , 121, 146-167	3.8	28
79	Winter diet of brown trout Salmo trutta in groundwater-dominated streams: influence of environmental factors on spatial and temporal variation. <i>Journal of Fish Biology</i> , 2016 , 89, 2449-2464	1.9	4
78	Do wetlands enhance downstream denitrification in agricultural landscapes? 2016 , 7, e01516		O
77	Carbon stable isotopes suggest that hippopotamus-vectored nutrients subsidize aquatic consumers in an East African river. <i>Ecosphere</i> , 2015 , 6, 1-11	3.1	50
76	Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. <i>Remote Sensing of Environment</i> , 2015 , 157, 199-215	13.2	147
75	Nitrogen transformations at the sediment later interface across redox gradients in the Laurentian Great Lakes. <i>Hydrobiologia</i> , 2014 , 731, 95-108	2.4	49
74	Ebullitive methane emissions from oxygenated wetland streams. <i>Global Change Biology</i> , 2014 , 20, 3408	3- 22 .4	52
73	A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. <i>Nature</i> , 2014 , 511, 452-6	50.4	194
72	Decomposition of tree leaf litter on pavement: implications for urban water quality. <i>Urban Ecosystems</i> , 2014 , 17, 369-385	2.8	32

(2012-2014)

71	CO2 and CH4 emissions from streams in a lake-rich landscape: Patterns, controls, and regional significance. <i>Global Biogeochemical Cycles</i> , 2014 , 28, 197-210	5.9	82
70	Bioavailability of dissolved organic carbon across a hillslope chronosequence in the Kuparuk River region, Alaska. <i>Soil Biology and Biochemistry</i> , 2014 , 79, 25-33	7.5	7
69	Variation in terrestrial and aquatic sources of methylmercury in stream predators as revealed by stable mercury isotopes. <i>Environmental Science & Environmental & Env</i>	10.3	42
68	Subcanopy Solar Radiation model: Predicting solar radiation across a heavily vegetated landscape using LiDAR and GIS solar radiation models. <i>Remote Sensing of Environment</i> , 2014 , 154, 387-397	13.2	52
67	Measurement and Modeling of Denitrification in Sand-Bed Streams under Various Land Uses. <i>Journal of Environmental Quality</i> , 2014 , 43, 1013-23	3.4	8
66	Winter feeding, growth and condition of brown trout Salmo trutta in a groundwater-dominated stream. <i>Journal of Freshwater Ecology</i> , 2014 , 29, 187-200	1.4	15
65	Selective feeding determines patterns of nutrient release by stream invertebrates. <i>Freshwater Science</i> , 2014 , 33, 1093-1107	2	29
64	An Ecological Network Analysis of nitrogen cycling in the Laurentian Great Lakes. <i>Ecological Modelling</i> , 2014 , 293, 150-160	3	20
63	Contrasting influences of stormflow and baseflow pathways on nitrogen and phosphorus export from an urban watershed. <i>Biogeochemistry</i> , 2014 , 121, 209-228	3.8	60
62	Measurement and Modeling of Denitrification in Sand-Bed Streams under Various Land Uses 2014 , 43, 1013		O
62 61		3.8	0 118
	43, 1013 The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and	3.8	
61	The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. <i>Biogeochemistry</i> , 2013 , 114, 71-92		118
61 60	The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. <i>Biogeochemistry</i> , 2013 , 114, 71-92 Human influences on nitrogen removal in lakes. <i>Science</i> , 2013 , 342, 247-50 Relative importance of breakage and decay as processes depleting large wood from streams.	33.3	118 217
61 60 59	The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. <i>Biogeochemistry</i> , 2013 , 114, 71-92 Human influences on nitrogen removal in lakes. <i>Science</i> , 2013 , 342, 247-50 Relative importance of breakage and decay as processes depleting large wood from streams. <i>Geomorphology</i> , 2013 , 190, 40-47 Estimating and scaling stream ecosystem metabolism along channels with heterogeneous	33.3	118 217 29
61 60 59 58	The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. <i>Biogeochemistry</i> , 2013 , 114, 71-92 Human influences on nitrogen removal in lakes. <i>Science</i> , 2013 , 342, 247-50 Relative importance of breakage and decay as processes depleting large wood from streams. <i>Geomorphology</i> , 2013 , 190, 40-47 Estimating and scaling stream ecosystem metabolism along channels with heterogeneous substrate. <i>Ecohydrology</i> , 2013 , 6, 679-688 Rates and controls of nitrification in a large oligotrophic lake. <i>Limnology and Oceanography</i> , 2013 ,	33·3 4·3 2·5	118 217 29
61 60 59 58 57	The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. <i>Biogeochemistry</i> , 2013 , 114, 71-92 Human influences on nitrogen removal in lakes. <i>Science</i> , 2013 , 342, 247-50 Relative importance of breakage and decay as processes depleting large wood from streams. <i>Geomorphology</i> , 2013 , 190, 40-47 Estimating and scaling stream ecosystem metabolism along channels with heterogeneous substrate. <i>Ecohydrology</i> , 2013 , 6, 679-688 Rates and controls of nitrification in a large oligotrophic lake. <i>Limnology and Oceanography</i> , 2013 , 58, 276-286	33·3 4·3 2·5	118 217 29 14 48

53	Global meta-analysis for controlling factors on carbon stable isotope ratios of lotic periphyton. <i>Oecologia</i> , 2012 , 170, 541-9	2.9	50
52	Linking water quality and well-being for improved assessment and valuation of ecosystem services. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 18619-24	11.5	291
51	Influence of subsurface drainage on quantity and quality of dissolved organic matter export from agricultural landscapes. <i>Journal of Geophysical Research</i> , 2011 , 116,		39
50	Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems. <i>Environmental Science & Environmental Scie</i>	10.3	55
49	Stream size and human influences on ecosystem production in river networks. <i>Ecosphere</i> , 2011 , 2, art87	3.1	77
48	The stoichiometry of nitrogen and phosphorus spiralling in heterotrophic and autotrophic streams. <i>Freshwater Biology</i> , 2011 , 56, 424-436	3.1	54
47	Isotopic composition of nitrogen in suspended particulate matter of Lake Superior: implications for nutrient cycling and organic matter transformation. <i>Biogeochemistry</i> , 2011 , 103, 1-14	3.8	11
46	Environmental controls of wood entrapment in upper Midwestern streams. <i>Hydrological Processes</i> , 2011 , 25, 593-602	3.3	10
45	Light-mediated thresholds in stream-water nutrient composition in a river network. <i>Ecology</i> , 2011 , 92, 140-50	4.6	68
44	Tracing energy flow in stream food webs using stable isotopes of hydrogen. <i>Freshwater Biology</i> , 2010 , 55, 941-951	3.1	54
43	The role of discharge variation in scaling of drainage area and food chain length in rivers. <i>Science</i> , 2010 , 330, 965-7	33.3	164
42	In situ production of methylmercury within a stream channel in northern California. <i>Environmental Science & Environmental Sci</i>	10.3	31
41	Factors influencing wood mobilization in streams. Water Resources Research, 2010, 46,	5.4	59
40	Patterns of hydrologic control over stream water total nitrogen to total phosphorus ratios. Biogeochemistry, 2010 , 99, 15-30	3.8	37
39	Food chains in freshwaters. Annals of the New York Academy of Sciences, 2009, 1162, 187-220	6.5	42
38	Mercury bioaccumulation in a stream network. Environmental Science & Environme	-20 .3	53
37	Comparison of morphological and biological control of exchange with transient storage zones in a field-scale flume. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		17
36	Effects of stream water chemistry and tree species on release and methylation of mercury during litter decomposition. <i>Environmental Science & Environmental & Environ</i>	10.3	18

(2003-2008)

35	Detecting characteristic hydrological and biogeochemical signals through nonparametric scatter plot analysis of normalized data. <i>Water Resources Research</i> , 2008 , 44,	5.4	2
34	Nitrogen and carbon uptake dynamics in Lake Superior. <i>Journal of Geophysical Research</i> , 2008 , 113,		14
33	Biogeochemical processes in high-latitude lakes and rivers 2008 , 137-156		17
32	Spatial and Temporal Variation of Ammonium in Lake Superior. <i>Journal of Great Lakes Research</i> , 2007 , 33, 581	3	15
31	Increasing stoichiometric imbalance in North America's largest lake: Nitrification in Lake Superior. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	65
30	Grazer traits, competition, and carbon sources to a headwater-stream food web. <i>Ecology</i> , 2007 , 88, 391	-4403	64
29	Introduced trout sever trophic connections in watersheds: consequences for a declining amphibian. <i>Ecology</i> , 2007 , 88, 2187-98	4.6	75
28	Isotopic evidence for in-lake production of accumulating nitrate in Lake Superior 2007 , 17, 2323-32		60
27	Effects of restoration and reflooding on soil denitrification in a leveed Midwestern floodplain 2007 , 17, 2365-76		56
26	The problem of boundaries in defining ecosystems: A potential landmine for uniting geomorphology and ecology. <i>Geomorphology</i> , 2007 , 89, 111-126	4.3	90
25	Snowmelt dominance of dissolved organic carbon in high-latitude watersheds: Implications for characterization and flux of river DOC. <i>Geophysical Research Letters</i> , 2006 , 33, n/a-n/a	4.9	114
24	Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	182
23	Quantity-activity relationship of denitrifying bacteria and environmental scaling in streams of a forested watershed. <i>Journal of Geophysical Research</i> , 2006 , 111,		19
22	Nitrogen loss from watersheds of interior Alaska underlain with discontinuous permafrost. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	69
21	A high-resolution time series of oxygen isotopes from the Kolyma River: Implications for the seasonal dynamics of discharge and basin-scale water use. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-n,	/ 4 .9	32
20	ERADICATION OF INVASIVE TAMARIX RAMOSISSIMA ALONG A DESERT STREAM INCREASES NATIVE FISH DENSITY 2005 , 15, 2072-2083		35
19	Patterns and controls of lotic algal stable carbon isotope ratios. <i>Limnology and Oceanography</i> , 2004 , 49, 850-861	4.8	153
18	Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed. Biogeochemistry, 2003, 62, 231-252	3.8	155

17	A basal aquatic-terrestrial trophic link in rivers: algal subsidies via shore-dwelling grasshoppers. <i>Oecologia</i> , 2002 , 131, 261-268	2.9	69
16	SPATIAL SCALES OF CARBON FLOW IN A RIVER FOOD WEB. <i>Ecology</i> , 2002 , 83, 1845-1859	4.6	148
15	Stable-Carbon-Isotope Ratios of River Biota: Implications for Energy Flow in Lotic Food Webs. <i>Ecology</i> , 2001 , 82, 1052	4.6	211
14	STABLE-CARBON-ISOTOPE RATIOS OF RIVER BIOTA:IMPLICATIONS FOR ENERGY FLOW IN LOTIC FOOD WEBS. <i>Ecology</i> , 2001 , 82, 1052-1064	4.6	66
13	Influence of stream size on ammonium and suspended particulate nitrogen processing. <i>Limnology and Oceanography</i> , 2001 , 46, 1-13	4.8	110
12	STABLE-CARBON-ISOTOPE RATIOS OF RIVER BIOTA:IMPLICATIONS FOR ENERGY FLOW IN LOTIC FOOD WEBS 2001 , 82, 1052		1
11	Effects of desiccation and temperature/irradiance on the metabolism of 2 arctic stream bryophyte taxa. <i>Journal of the North American Benthological Society</i> , 2000 , 19, 263-273		17
10	Roles of Bryophytes in Stream Ecosystems. <i>Journal of the North American Benthological Society</i> , 1999 , 18, 151-184		114
9	Effects of water velocity on algal carbon isotope ratios: Implications for river food web studies. Limnology and Oceanography, 1999 , 44, 1198-1203	4.8	194
8	Comparison of Epilithic Algal and Bryophyte Metabolism in an Arctic Tundra Stream, Alaska. <i>Journal of the North American Benthological Society</i> , 1998 , 17, 210-227		23
7	Biological Responses to Fertilization of Oksrukuyik Creek, a Tundra Stream. Journal of the North		
	American Benthological Society, 1998 , 17, 190-209		32
6	· · · · · · · · · · · · · · · · · · ·		15
5	American Benthological Society, 1998 , 17, 190-209 Organic Matter Dynamics in the Kuparuk River, a Tundra River in Alaska, USA. <i>Journal of the North</i>	3.1	
	American Benthological Society, 1998, 17, 190-209 Organic Matter Dynamics in the Kuparuk River, a Tundra River in Alaska, USA. Journal of the North American Benthological Society, 1997, 16, 18-23 Dams and Downstream Aquatic Biodiversity: Potential Food Web Consequences of Hydrologic and	3.1	15
5	American Benthological Society, 1998, 17, 190-209 Organic Matter Dynamics in the Kuparuk River, a Tundra River in Alaska, USA. Journal of the North American Benthological Society, 1997, 16, 18-23 Dams and Downstream Aquatic Biodiversity: Potential Food Web Consequences of Hydrologic and Geomorphic Change. Environmental Management, 1996, 20, 887-95 Long-term effects of PO4 fertilization on the distribution of bryophytes in an arctic river.	3.1	15 241

Stable Isotope Tracing of Temporal and Spatial Variability in Organic Matter Sources to Freshwater Ecosystems283-333