Edward P Kolodziej

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6208743/edward-p-kolodziej-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

44 1,736 20 41 g-index

51 2,159 9.1 4.77 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
44	A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. <i>Science</i> , 2021 , 371, 185-189	33.3	140
43	Toxicity Testing of Effluent-Dominated Stream Using Predictive Molecular-Level Toxicity Signatures Based on High-Resolution Mass Spectrometry: A Case Study of the Lubbock Canyon Lake System. <i>Environmental Science & Environmental Environm</i>	10.3	1
42	Treading Water: Tire Wear Particle Leachate Recreates an Urban Runoff Mortality Syndrome in Coho but Not Chum Salmon. <i>Environmental Science & Environmental Science & Environ</i>	10.3	11
41	Biotransformation of Current-Use Progestin Dienogest and Drospirenone in Laboratory-Scale Activated Sludge Systems Forms High-Yield Products with Altered Endocrine Activity. <i>Environmental Science & Dienogy</i> , 2021 , 55, 13869-13880	10.3	2
40	Suspect and Nontarget Screening for Contaminants of Emerging Concern in an Urban Estuary. <i>Environmental Science & Environmental Science & Environment</i>	10.3	65
39	Photolysis of Trenbolone Acetate Metabolites in the Presence of Nucleophiles: Evidence for Metastable Photoaddition Products and Reversible Associations with Dissolved Organic Matter. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	1
38	Developing Unique Nontarget High-Resolution Mass Spectrometry Signatures to Track Contaminant Sources in Urban Waters. <i>Environmental Science and Technology Letters</i> , 2020 , 7,	11	13
37	More Than a First Flush: Urban Creek Storm Hydrographs Demonstrate Broad Contaminant Pollutographs. <i>Environmental Science & Environmental Science & E</i>	10.3	32
36	Sorption and transport of trenbolone and altrenogest photoproducts in soil-water systems. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 1650-1663	4.3	3
35	Intramolecular [2 + 2] Photocycloaddition of Altrenogest: Confirmation of Product Structure, Theoretical Mechanistic Insight, and Bioactivity Assessment. <i>Journal of Organic Chemistry</i> , 2019 , 84, 113	8 <i>6</i> 6 - 11	3 ₹1
34	Detection and quantification of metastable photoproducts of trenbolone and altrenogest using liquid chromatography-tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2019 , 1603, 150-159	4.5	6
33	Induction of Microbial Oxidative Stress as a New Strategy to Enhance the Enzymatic Degradation of Organic Micropollutants in Synthetic Wastewater. <i>Environmental Science & Environmental Science & En</i>	10.3	8
32	Application of Nontarget High Resolution Mass Spectrometry Data to Quantitative Source Apportionment. <i>Environmental Science & Environmental Science &</i>	10.3	13
31	Quantification of organic contaminants in urban stormwater by isotope dilution and liquid chromatography-tandem mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 7791-78	o464	19
30	Evaluating emerging organic contaminant removal in an engineered hyporheic zone using high resolution mass spectrometry. <i>Water Research</i> , 2019 , 150, 140-152	12.5	23
29	Evaluation of semi-volatile contaminant transport in a novel, gas-tight direct contact membrane distillation system. <i>Desalination</i> , 2018 , 427, 35-41	10.3	15
28	Using High-Resolution Mass Spectrometry to Identify Organic Contaminants Linked to Urban Stormwater Mortality Syndrome in Coho Salmon. <i>Environmental Science & Environmental </i>	10.3	75

27	Formation of bioactive transformation products during glucocorticoid chlorination. <i>Environmental Science: Water Research and Technology</i> , 2017 , 3, 450-461	4.2	9
26	Environmental photochemistry of dienogest: phototransformation to estrogenic products and increased environmental persistence via reversible photohydration. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 1414-1426	4.3	10
25	Development of suspect and non-target screening methods for detection of organic contaminants in highway runoff and fish tissue with high-resolution time-of-flight mass spectrometry. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 1185-1196	4.3	59
24	Reversible Photohydration of Trenbolone Acetate Metabolites: Mechanistic Understanding of Product-to-Parent Reversion through Complementary Experimental and Theoretical Approaches. <i>Environmental Science & Description of the Environmental Science & Description </i>	10.3	11
23	Environmental Photochemistry of Altrenogest: Photoisomerization to a Bioactive Product with Increased Environmental Persistence via Reversible Photohydration. <i>Environmental Science & Technology</i> , 2016 , 50, 7480-8	10.3	16
22	Coupled reversion and stream-hyporheic exchange processes increase environmental persistence of trenbolone metabolites. <i>Nature Communications</i> , 2015 , 6, 7067	17.4	11
21	Rates and product identification for trenbolone acetate metabolite biotransformation under aerobic conditions. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1472-84	3.8	10
20	Trenbolone acetate metabolite transport in rangelands and irrigated pasture: observations and conceptual approaches for agro-ecosystems. <i>Environmental Science & Environmental Science & Environmenta</i>	76 ^{0.3}	14
19	Mass balance approaches to characterizing the leaching potential of trenbolone acetate metabolites in agro-ecosystems. <i>Environmental Science & Environmental </i>	10.3	16
18	Environmental designer drugs: when transformation may not eliminate risk. <i>Environmental Science & Environmental & Env</i>	10.3	67
17	Integrated assessment of runoff from livestock farming operations: Analytical chemistry, in vitro bioassays, and in vivo fish exposures. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1849-57	3.8	34
16	Sorption and mineral-promoted transformation of synthetic hormone growth promoters in soil systems. <i>Journal of Agricultural and Food Chemistry</i> , 2014 , 62, 12277-86	5.7	12
15	Surface and subsurface attenuation of trenbolone acetate metabolites and manure-derived constituents in irrigation runoff on agro-ecosystems. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 2507-16	4.3	11
14	Identification and environmental implications of photo-transformation products of trenbolone acetate metabolites. <i>Environmental Science & Environmental E</i>	10.3	36
13	Product-to-parent reversion of trenbolone: unrecognized risks for endocrine disruption. <i>Science</i> , 2013 , 342, 347-51	33.3	62
12	Phototransformation rates and mechanisms for synthetic hormone growth promoters used in animal agriculture. <i>Environmental Science & Environmental Environ</i>	10.3	44
11	Occurrence of trenbolone acetate metabolites in simulated confined animal feeding operation (CAFO) runoff. <i>Environmental Science & Environmental Scie</i>	10.3	33
10	Analysis of trenbolone acetate metabolites and melengestrol in environmental matrices using gas chromatography-tandem mass spectrometry. <i>Talanta</i> , 2012 , 99, 238-46	6.2	26

9	Fate of endogenous steroid hormones in steer feedlots under simulated rainfall-induced runoff. <i>Environmental Science & Environmental </i>	10.3	65
8	Site-specific profiles of estrogenic activity in agricultural areas of California's inland waters. <i>Environmental Science & Environmental Science & En</i>	10.3	32
7	Rangeland grazing as a source of steroid hormones to surface waters. <i>Environmental Science & Environmental Science & Technology</i> , 2007 , 41, 3514-20	10.3	84
6	Attenuation of wastewater-derived contaminants in an effluent-dominated river. <i>Environmental Science & Environmental </i>	10.3	160
5	In vivo bioassay-guided fractionation of marine sediment extracts from the Southern California Bight, USA, for estrogenic activity. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 2820-6	3.8	79
4	Dairy wastewater, aquaculture, and spawning fish as sources of steroid hormones in the aquatic environment. <i>Environmental Science & Environmental Environ</i>	10.3	233
3	Approaches for Quantifying the Attenuation of Wastewater-Derived Contaminants in the Aquatic Environment. <i>Chimia</i> , 2003 , 57, 567-569	1.3	9
2	Quantification of steroid hormones with pheromonal properties in municipal wastewater effluent. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 2622-9	3.8	142
1	6PPD-Quinone: Revised Toxicity Assessment and Quantification with a Commercial Standard. <i>Environmental Science and Technology Letters</i> ,	11	13