Edward P Kolodziej

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6208743/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon. Science, 2021, 371, 185-189.	6.0	504
2	Dairy Wastewater, Aquaculture, and Spawning Fish as Sources of Steroid Hormones in the Aquatic Environment. Environmental Science & amp; Technology, 2004, 38, 6377-6384.	4.6	262
3	Attenuation of Wastewater-Derived Contaminants in an Effluent-Dominated River. Environmental Science & Technology, 2006, 40, 7257-7262.	4.6	175
4	QUANTIFICATION OF STEROID HORMONES WITH PHEROMONAL PROPERTIES IN MUNICIPAL WASTEWATER EFFLUENT. Environmental Toxicology and Chemistry, 2003, 22, 2622.	2.2	164
5	Using High-Resolution Mass Spectrometry to Identify Organic Contaminants Linked to Urban Stormwater Mortality Syndrome in Coho Salmon. Environmental Science & Technology, 2018, 52, 10317-10327.	4.6	149
6	6PPD-Quinone: Revised Toxicity Assessment and Quantification with a Commercial Standard. Environmental Science and Technology Letters, 2022, 9, 140-146.	3.9	118
7	Suspect and Nontarget Screening for Contaminants of Emerging Concern in an Urban Estuary. Environmental Science & Technology, 2020, 54, 889-901.	4.6	117
8	Rangeland Grazing as a Source of Steroid Hormones to Surface Waters. Environmental Science & Technology, 2007, 41, 3514-3520.	4.6	96
9	IN VIVO BIOASSAY-GUIDED FRACTIONATION OF MARINE SEDIMENT EXTRACTS FROM THE SOUTHERN CALIFORNIA BIGHT, USA, FOR ESTROGENIC ACTIVITY. Environmental Toxicology and Chemistry, 2005, 24, 2820.	2.2	83
10	Development of suspect and non-target screening methods for detection of organic contaminants in high-resolution time-of-flight mass spectrometry. Environmental Sciences: Processes and Impacts, 2017, 19, 1185-1196.	1.7	76
11	Environmental Designer Drugs: When Transformation May Not Eliminate Risk. Environmental Science & Technology, 2014, 48, 11737-11745.	4.6	75
12	More Than a First Flush: Urban Creek Storm Hydrographs Demonstrate Broad Contaminant Pollutographs. Environmental Science & Technology, 2020, 54, 6152-6165.	4.6	74
13	Product-to-Parent Reversion of Trenbolone: Unrecognized Risks for Endocrine Disruption. Science, 2013, 342, 347-351.	6.0	73
14	Fate of Endogenous Steroid Hormones in Steer Feedlots Under Simulated Rainfall-Induced Runoff. Environmental Science & Technology, 2011, 45, 8811-8818.	4.6	70
15	Treading Water: Tire Wear Particle Leachate Recreates an Urban Runoff Mortality Syndrome in Coho but Not Chum Salmon. Environmental Science & Technology, 2021, 55, 11767-11774.	4.6	68
16	Identification and Environmental Implications of Photo-Transformation Products of Trenbolone Acetate Metabolites. Environmental Science & Technology, 2013, 47, 5031-5041.	4.6	47
17	Phototransformation Rates and Mechanisms for Synthetic Hormone Growth Promoters Used in Animal Agriculture. Environmental Science & amp; Technology, 2012, 46, 13202-13211.	4.6	45
18	Quantification of organic contaminants in urban stormwater by isotope dilution and liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 7791-7806.	1.9	41

#	Article	IF	CITATIONS
19	Integrated assessment of runoff from livestock farming operations: Analytical chemistry, in vitro bioassays, and in vivo fish exposures. Environmental Toxicology and Chemistry, 2014, 33, 1849-1857.	2.2	40
20	Occurrence of Trenbolone Acetate Metabolites in Simulated Confined Animal Feeding Operation (CAFO) Runoff. Environmental Science & amp; Technology, 2012, 46, 3803-3810.	4.6	39
21	Evaluating emerging organic contaminant removal in an engineered hyporheic zone using high resolution mass spectrometry. Water Research, 2019, 150, 140-152.	5.3	39
22	Transformation Product Formation upon Heterogeneous Ozonation of the Tire Rubber Antioxidant 6PPD (<i>N</i> -(1,3-dimethylbutyl)- <i>N</i> ′-phenyl- <i>p</i> -phenylenediamine). Environmental Science and Technology Letters, 2022, 9, 413-419.	3.9	38
23	Site-Specific Profiles of Estrogenic Activity in Agricultural Areas of California's Inland Waters. Environmental Science & Technology, 2009, 43, 9110-9116.	4.6	34
24	Analysis of trenbolone acetate metabolites and melengestrol in environmental matrices using gas chromatography–tandem mass spectrometry. Talanta, 2012, 99, 238-246.	2.9	34
25	Developing Unique Nontarget High-Resolution Mass Spectrometry Signatures to Track Contaminant Sources in Urban Waters. Environmental Science and Technology Letters, 2020, 7, 923-930.	3.9	32
26	Application of Nontarget High Resolution Mass Spectrometry Data to Quantitative Source Apportionment. Environmental Science & amp; Technology, 2019, 53, 12257-12268.	4.6	25
27	Environmental Photochemistry of Altrenogest: Photoisomerization to a Bioactive Product with Increased Environmental Persistence via Reversible Photohydration. Environmental Science & Technology, 2016, 50, 7480-7488.	4.6	21
28	Evaluation of semi-volatile contaminant transport in a novel, gas-tight direct contact membrane distillation system. Desalination, 2018, 427, 35-41.	4.0	19
29	Mass Balance Approaches to Characterizing the Leaching Potential of Trenbolone Acetate Metabolites in Agro-Ecosystems. Environmental Science & amp; Technology, 2014, 48, 3715-3723.	4.6	18
30	Induction of Microbial Oxidative Stress as a New Strategy to Enhance the Enzymatic Degradation of Organic Micropollutants in Synthetic Wastewater. Environmental Science & Technology, 2019, 53, 9553-9563.	4.6	18
31	Sorption and Mineral-Promoted Transformation of Synthetic Hormone Growth Promoters in Soil Systems. Journal of Agricultural and Food Chemistry, 2014, 62, 12277-12286.	2.4	16
32	Trenbolone Acetate Metabolite Transport in Rangelands and Irrigated Pasture: Observations and Conceptual Approaches for Agro-Ecosystems. Environmental Science & Technology, 2014, 48, 12569-12576.	4.6	16
33	Characterizing the Chemical Profile of Biological Decline in Stormwater-Impacted Urban Watersheds. Environmental Science & Technology, 2022, 56, 3159-3169.	4.6	15
34	Reversible Photohydration of Trenbolone Acetate Metabolites: Mechanistic Understanding of Product-to-Parent Reversion through Complementary Experimental and Theoretical Approaches. Environmental Science & Technology, 2016, 50, 6753-6761.	4.6	14
35	Formation of bioactive transformation products during glucocorticoid chlorination. Environmental Science: Water Research and Technology, 2017, 3, 450-461.	1.2	13
36	Coupled reversion and stream-hyporheic exchange processes increase environmental persistence of trenbolone metabolites. Nature Communications, 2015, 6, 7067.	5.8	12

#	Article	IF	CITATIONS
37	Approaches for Quantifying the Attenuation of Wastewater-Derived Contaminants in the Aquatic Environment. Chimia, 2003, 57, 567-569.	0.3	11
38	Surface and subsurface attenuation of trenbolone acetate metabolites and manure-derived constituents in irrigation runoff on agro-ecosystems. Environmental Sciences: Processes and Impacts, 2014, 16, 2507-2516.	1.7	11
39	Environmental photochemistry of dienogest: phototransformation to estrogenic products and increased environmental persistence <i>via</i> reversible photohydration. Environmental Sciences: Processes and Impacts, 2017, 19, 1414-1426.	1.7	11
40	Rates and product identification for trenbolone acetate metabolite biotransformation under aerobic conditions. Environmental Toxicology and Chemistry, 2015, 34, 1472-1484.	2.2	10
41	Biotransformation of Current-Use Progestin Dienogest and Drospirenone in Laboratory-Scale Activated Sludge Systems Forms High-Yield Products with Altered Endocrine Activity. Environmental Science & Technology, 2021, 55, 13869-13880.	4.6	9
42	Detection and quantification of metastable photoproducts of trenbolone and altrenogest using liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2019, 1603, 150-159.	1.8	8
43	Assessing Reliability of Non-targeted High-Resolution Mass Spectrometry Fingerprints for Quantitative Source Apportionment in Complex Matrices. Analytical Chemistry, 2022, 94, 2723-2731.	3.2	7
44	Intramolecular [2 + 2] Photocycloaddition of Altrenogest: Confirmation of Product Structure, Theoretical Mechanistic Insight, and Bioactivity Assessment. Journal of Organic Chemistry, 2019, 84, 11366-11371.	1.7	6
45	Toxicity Testing of Effluent-Dominated Stream Using Predictive Molecular-Level Toxicity Signatures Based on High-Resolution Mass Spectrometry: A Case Study of the Lubbock Canyon Lake System. Environmental Science & Technology, 2021, 55, 3070-3080.	4.6	6
46	Sorption and transport of trenbolone and altrenogest photoproducts in soil–water systems. Environmental Sciences: Processes and Impacts, 2019, 21, 1650-1663.	1.7	5
47	Photolysis of Trenbolone Acetate Metabolites in the Presence of Nucleophiles: Evidence for Metastable Photoaddition Products and Reversible Associations with Dissolved Organic Matter. Environmental Science & Technology, 2020, 54, 12181-12190.	4.6	3
48	The necessity of bioanalytical tools for advancing water and sediment quality assessment. Environmental Sciences: Processes and Impacts, 2017, 19, 1113-1116.	1.7	0
49	Editor's choice: underappreciated science. Environmental Sciences: Processes and Impacts, 2018, 20, 1199-1201.	1.7	0