
Jorge RodrÃ-guez-Celma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6208291/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron homeostasis in plants – a brief overview. Metallomics, 2017, 9, 813-823.	1.0	287
2	Mutually Exclusive Alterations in Secondary Metabolism Are Critical for the Uptake of Insoluble Iron Compounds by Arabidopsis and Medicago truncatula. Plant Physiology, 2013, 162, 1473-1485.	2.3	212
3	The transcriptional response of Arabidopsis leaves to Fe deficiency. Frontiers in Plant Science, 2013, 4, 276.	1.7	152
4	Scopoletin 8-Hydroxylase-Mediated Fraxetin Production Is Crucial for Iron Mobilization. Plant Physiology, 2018, 177, 194-207.	2.3	124
5	Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply. BMC Plant Biology, 2010, 10, 120.	1.6	105
6	Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17584-17591.	3.3	91
7	Changes induced by two levels of cadmium toxicity in the 2-DE protein profile of tomato roots. Journal of Proteomics, 2010, 73, 1694-1706.	1.2	88
8	Root Responses of <i>Medicago truncatula</i> Plants Grown in Two Different Iron Deficiency Conditions: Changes in Root Protein Profile and Riboflavin Biosynthesis. Journal of Proteome Research, 2011, 10, 2590-2601.	1.8	71
9	Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 991-1002.	1.1	63
10	Time course induction of several key enzymes in Medicago truncatula roots in response to Fe deficiency. Plant Physiology and Biochemistry, 2009, 47, 1082-1088.	2.8	52
11	Characterization of Flavins in Roots of Fe-Deficient Strategy I Plants, with a Focus on Medicago truncatula. Plant and Cell Physiology, 2011, 52, 2173-2189.	1.5	51
12	Hemerythrin E3 Ubiquitin Ligases as Negative Regulators of Iron Homeostasis in Plants. Frontiers in Plant Science, 2019, 10, 98.	1.7	48
13	The stage of seed development influences iron bioavailability in pea (Pisum sativum L.). Scientific Reports, 2018, 8, 6865.	1.6	39
14	The Distinct Functional Roles of the Inner and Outer Chloroplast Envelope of Pea (<i>Pisum) Tj ETQq0 0 0 rgBT /0</i>	Dverlock 1 1.8	0 Jf 50 222 T
15	Reduction-based iron uptake revisited. Plant Signaling and Behavior, 2013, 8, e26116.	1.2	31
16	Pea Ferritin Stability under Gastric pH Conditions Determines the Mechanism of Iron Uptake in Caco-2 Cells. Journal of Nutrition, 2018, 148, 1229-1235.	1.3	27
17	Changes induced by zinc toxicity in the 2-DE protein profile of sugar beet roots. Journal of Proteomics, 2013, 94, 149-161.	1.2	22

18Changes Induced by Fe Deficiency and Fe Resupply in the Root Protein Profile of a Peach-Almond Hybrid
Rootstock. Journal of Proteome Research, 2013, 12, 1162-1172.1.822

#	Article	IF	CITATIONS
19	Systems-wide analysis of manganese deficiency-induced changes in gene activity of Arabidopsis roots. Scientific Reports, 2016, 6, 35846.	1.6	17
20	Effects of Fe deficiency on the protein profiles and lignin composition of stem tissues from Medicago truncatula in absence or presence of calcium carbonate. Journal of Proteomics, 2016, 140, 1-12.	1.2	12
21	Editorial: Nutrient Interactions in Plants. Frontiers in Plant Science, 2021, 12, 782505.	1.7	7
22	Effects of Fe and Mn Deficiencies on the Root Protein Profiles of Tomato (Solanum lycopersicum) Using Two-Dimensional Electrophoresis and Label-Free Shotgun Analyses. International Journal of Molecular Sciences, 2022, 23, 3719.	1.8	5