
Haiyong Ao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6208169/publications.pdf Version: 2024-02-01

HAIVONG AO

#	Article	IF	CITATIONS
1	De novo strategy with engineering a multifunctional bacterial cellulose-based dressing for rapid healing of infected wounds. Bioactive Materials, 2022, 13, 212-222.	8.6	27
2	Designment of polydopamine/bacterial cellulose incorporating copper (II) sulfate as an antibacterial wound dressing. Materials Science and Engineering C, 2022, 134, 112591.	3.8	16
3	A facile, biosynthetic design strategy for high-performance multifunctional bacterial cellulose-based dressing. Composites Part B: Engineering, 2022, 238, 109945.	5.9	9
4	Manipulating thermal conductivity of polyimide composites by hybridizing micro- and nano-sized aluminum nitride for potential aerospace usage. Journal of Thermoplastic Composite Materials, 2020, 33, 1017-1029.	2.6	15
5	Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma. Biomedical Materials (Bristol), 2020, 15, 035022.	1.7	30
6	Optimized Nanointerface Engineering of Micro/Nanostructured Titanium Implants to Enhance Cell–Nanotopography Interactions and Osseointegration. ACS Biomaterials Science and Engineering, 2020, 6, 969-983.	2.6	42
7	Controlling Preosteoblast Behavior through Manganese Vacancyâ€Rich Birnessite with Enhanced Divalent Cation Modulation of Fibronectin–Integrin Interactions. Advanced Materials Interfaces, 2020, 7, 1902127.	1.9	6
8	Engineering quaternized chitosan in the 3D bacterial cellulose structure for antibacterial wound dressings. Polymer Testing, 2020, 86, 106490.	2.3	37
9	Effect of highly dispersed graphene and graphene oxide in 3D nanofibrous bacterial cellulose scaffold on cell responses: A comparative study. Materials Chemistry and Physics, 2019, 235, 121774.	2.0	30
10	Improved antibacterial properties of collagen I/hyaluronic acid/quaternized chitosan multilayer modified titanium coatings with both contact-killing and release-killing functions. Journal of Materials Chemistry B, 2019, 7, 1951-1961.	2.9	54
11	Preparation of oriented bacterial cellulose nanofibers by flowing medium-assisted biosynthesis and influence of flowing velocity. Journal of Polymer Engineering, 2018, 38, 299-305.	0.6	11
12	An inÂvivo study on the effect of coating stability on osteointegration performance of collagen/hyaluronic acid multilayer modified titanium implants. Bioactive Materials, 2018, 3, 97-101.	8.6	20
13	Preparation, structural characterization, and in vitro cell studies of three-dimensional SiO2–CaO binary glass scaffolds built ofultra-small nanofibers. Materials Science and Engineering C, 2017, 76, 94-101.	3.8	14
14	The synergistic effect of type I collagen and hyaluronic acid on the biological properties of Col/HA-multilayer-modified titanium coatings: an in vitro and in vivo study. RSC Advances, 2017, 7, 25828-25837.	1.7	6
15	Immobilizing bacitracin on titanium for prophylaxis of infections and for improving osteoinductivity: An in vivo study. Colloids and Surfaces B: Biointerfaces, 2017, 150, 183-191.	2.5	51
16	Covalent Immobilization of Enoxacin onto Titanium Implant Surfaces for Inhibiting Multiple Bacterial Species Infection and <i>In Vivo</i> Methicillin-Resistant Staphylococcus aureus Infection Prophylaxis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	34
17	Covalent immobilization of KR-12 peptide onto a titanium surface for decreasing infection and promoting osteogenic differentiation. RSC Advances, 2016, 6, 46733-46743.	1.7	28
18	Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Acta Biomaterialia, 2016, 46, 112-128.	4.1	128

Haiyong Ao

#	Article	IF	CITATIONS
19	Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes. Bone Research, 2016, 4, 16027.	5.4	54
20	Biofunctionalization of titanium with bacitracin immobilization shows potential for anti-bacteria, osteogenesis and reduction of macrophage inflammation. Colloids and Surfaces B: Biointerfaces, 2016, 145, 728-739.	2.5	59
21	Quaternised chitosan coating on titanium provides a self-protective surface that prevents bacterial colonisation and implant-associated infections. RSC Advances, 2015, 5, 54304-54311.	1.7	19
22	Improved hMSC functions on titanium coatings by type I collagen immobilization. Journal of Biomedical Materials Research - Part A, 2014, 102, 204-214.	2.1	52
23	Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2014, 116, 72-80.	2.5	45
24	Immobilization of hyaluronic acid on plasma-sprayed porous titanium coatings for improving biological properties. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1211-1224.	1.9	14
25	Fabrication and <i>in vitro</i> evaluation of stable collagen/hyaluronic acid biomimetic multilayer on titanium coatings. Journal of the Royal Society Interface, 2013, 10, 20130070.	1.5	37