
## Susumu Itoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6208077/publications.pdf Version: 2024-02-01



SUSUMULTOH

| #  | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature, 1997, 389, 631-635.                                                                                                                                                                       | 13.7 | 1,684     |
| 2  | Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO<br>Journal, 2002, 21, 1743-1753.                                                                                                                                         | 3.5  | 972       |
| 3  | Activin Receptor-like Kinase (ALK)1 Is an Antagonistic Mediator of Lateral TGFβ/ALK5 Signaling.<br>Molecular Cell, 2003, 12, 817-828.                                                                                                                                       | 4.5  | 631       |
| 4  | Identification and Functional Characterization of a Smad Binding Element (SBE) in the JunB Promoter<br>That Acts as a Transforming Growth Factor-β, Activin, and Bone Morphogenetic Protein-inducible<br>Enhancer. Journal of Biological Chemistry, 1998, 273, 21145-21152. | 1.6  | 523       |
| 5  | Signaling of transforming growth factor-β family members through Smad proteins. FEBS Journal, 2000, 267, 6954-6967.                                                                                                                                                         | 0.2  | 466       |
| 6  | Regulation of cell proliferation by Smad proteins. Journal of Cellular Physiology, 2002, 191, 1-16.                                                                                                                                                                         | 2.0  | 418       |
| 7  | Hedgehog Creates a Gradient of DPP Activity in Drosophila Wing Imaginal Discs. Molecular Cell, 2000,<br>5, 59-71.                                                                                                                                                           | 4.5  | 375       |
| 8  | The L45 loop in type I receptors for TGF-β family members is a critical determinant in specifying Smad isoform activation. FEBS Letters, 1998, 434, 83-87.                                                                                                                  | 1.3  | 352       |
| 9  | Negative regulation of TGF-β receptor/Smad signal transduction. Current Opinion in Cell Biology, 2007, 19, 176-184.                                                                                                                                                         | 2.6  | 351       |
| 10 | Induction of Inhibitory Smad6 and Smad7 mRNA by TGF-β Family Members. Biochemical and Biophysical<br>Research Communications, 1998, 249, 505-511.                                                                                                                           | 1.0  | 323       |
| 11 | Stimulation of Id1 Expression by Bone Morphogenetic Protein Is Sufficient and Necessary for Bone<br>Morphogenetic Protein–Induced Activation of Endothelial Cells. Circulation, 2002, 106, 2263-2270.                                                                       | 1.6  | 280       |
| 12 | Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells.<br>EMBO Journal, 2004, 23, 541-551.                                                                                                                                          | 3.5  | 222       |
| 13 | Transforming Growth Factor $\hat{l}^21$ Induces Nuclear Export of Inhibitory Smad7. Journal of Biological Chemistry, 1998, 273, 29195-29201.                                                                                                                                | 1.6  | 218       |
| 14 | Elucidation of Smad Requirement in Transforming Growth Factor-Î <sup>2</sup> Type I Receptor-induced Responses.<br>Journal of Biological Chemistry, 2003, 278, 3751-3761.                                                                                                   | 1.6  | 189       |
| 15 | Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control. FEBS Journal, 1993, 218, 585-595.                                                                                                                     | 0.2  | 176       |
| 16 | TGF-β promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85α. Science Signaling, 2017, 10, .                                                                                                                      | 1.6  | 157       |
| 17 | Smad7 mediates apoptosis induced by transforming growth factor β in prostatic carcinoma cells.<br>Current Biology, 2000, 10, 535-538.                                                                                                                                       | 1.8  | 149       |
| 18 | The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-1²/Smad signalling. Genes To Cells, 2002, 7, 321-331.                                                                             | 0.5  | 137       |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Smad and AML Proteins Synergistically Confer Transforming Growth Factor Î <sup>2</sup> 1 Responsiveness to Human Germ-line IgA Genes. Journal of Biological Chemistry, 2000, 275, 3552-3560.              | 1.6 | 136       |
| 20 | TMEPAI, a Transmembrane TGF-Î <sup>2</sup> -Inducible Protein, Sequesters Smad Proteins from Active Participation in TGF-Î <sup>2</sup> Signaling. Molecular Cell, 2010, 37, 123-134.                     | 4.5 | 136       |
| 21 | Compensatory signalling induced in the yolk sac vasculature by deletion of TGFÎ <sup>2</sup> receptors in mice.<br>Journal of Cell Science, 2007, 120, 4269-4277.                                         | 1.2 | 104       |
| 22 | Xenopus Smad4β Is the Co-Smad Component of Developmentally Regulated Transcription Factor<br>Complexes Responsible for Induction of Early Mesodermal Genes. Developmental Biology, 1999, 214,<br>354-369. | 0.9 | 88        |
| 23 | Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4.<br>Oncogene, 2000, 19, 4396-4404.                                                                        | 2.6 | 86        |
| 24 | Intracellular signaling of osteogenic protein-1 through Smad5 activation. , 1998, 177, 355-363.                                                                                                           |     | 73        |
| 25 | Mouse Cytochrome P450 (Cyp3a11): Predominant Expression in Liver and Capacity to Activate Aflatoxin B1. Archives of Biochemistry and Biophysics, 1997, 340, 215-218.                                      | 1.4 | 68        |
| 26 | Smad2/Smad3 in endothelium is indispensable for vascular stability via S1PR1 and N-cadherin expressions. Blood, 2012, 119, 5320-5328.                                                                     | 0.6 | 62        |
| 27 | Mouse liver cytochrome P-450 (P-450IIIAm1): its cDNA cloning and inducibility by dexamethasone.<br>Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1130, 329-332.                         | 2.4 | 58        |
| 28 | <scp>TMEPAI</scp> / <scp>PMEPA</scp> 1 enhances tumorigenic activities in lung cancer cells. Cancer<br>Science, 2014, 105, 334-341.                                                                       | 1.7 | 54        |
| 29 | Arf6 regulates tumour angiogenesis and growth through HGF-induced endothelial β1 integrin recycling. Nature Communications, 2015, 6, 7925.                                                                | 5.8 | 52        |
| 30 | Smad7 and protein phosphatase 1alpha are critical determinants in the duration of TGF-beta/ALK1 signaling in endothelial cells. BMC Cell Biology, 2006, 7, 16.                                            | 3.0 | 50        |
| 31 | Assignment of the human interferon regulatory factor-1 (IRF1) gene to chromosome 5q23–q31.<br>Genomics, 1991, 10, 1097-1099.                                                                              | 1.3 | 48        |
| 32 | C18 ORF1, a Novel Negative Regulator of Transforming Growth Factor-Î <sup>2</sup> Signaling. Journal of Biological<br>Chemistry, 2014, 289, 12680-12692.                                                  | 1.6 | 48        |
| 33 | Targeted Degradation of Proteins Localized in Subcellular Compartments by Hybrid Small Molecules.<br>Molecular Pharmacology, 2017, 91, 159-166.                                                           | 1.0 | 45        |
| 34 | Rat liver flavin-containing monooxygenase (FMO): cDNA cloning and expression in yeast. Biochimica Et<br>Biophysica Acta Gene Regulatory Mechanisms, 1993, 1173, 165-171.                                  | 2.4 | 44        |
| 35 | Requirement of TCF7L2 for TGF-β-dependent Transcriptional Activation of the TMEPAI Gene. Journal of<br>Biological Chemistry, 2010, 285, 38023-38033.                                                      | 1.6 | 44        |
| 36 | Inhibition of the Transcription of CYP1A1 Gene by the Upstream Stimulatory Factor 1 in Rabbits. Journal of Biological Chemistry, 1997, 272, 30025-30031.                                                  | 1.6 | 43        |

| #  | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Novel Form of Mouse Cytochrome P 450 3A (Cyp3a-16). Its cDNA Cloning and Expression in Fetal Liver.<br>FEBS Journal, 1994, 226, 877-882.                                                                                                                                                       | 0.2 | 42        |
| 38 | Flk1-GFP BAC Tg Mice: An Animal Model for the Study of Blood Vessel Development. Experimental Animals, 2010, 59, 615-622.                                                                                                                                                                        | 0.7 | 42        |
| 39 | Genomic organization of human fetal specific P-450IIIA7(cytochrome P-450HFLa)-related gene(s) and<br>interaction of transcriptional regulatory factor with its DNA element in the 5′ flanking region.<br>Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1130, 133-138.          | 2.4 | 40        |
| 40 | Inhibition of endothelial cell activation by bHLH protein E2-2 and its impairment of angiogenesis.<br>Blood, 2010, 115, 4138-4147.                                                                                                                                                               | 0.6 | 34        |
| 41 | Molecular cloning and functional expression of a mouse cytochrome P-450 (Cyp3a-13): examination of<br>Cyp3a-13 enzyme to activate aflatoxin B1 (AFB1). Biochimica Et Biophysica Acta - General Subjects, 1994,<br>1201, 405-410.                                                                 | 1.1 | 32        |
| 42 | Adhesion Molecules on Eosinophils in Acute Eosinophilic Pneumonia. American Journal of Respiratory and Critical Care Medicine, 1995, 151, 1259-1262.                                                                                                                                             | 2.5 | 32        |
| 43 | PDZK1-interacting protein 1 (PDZK1IP1) traps Smad4 protein and suppresses transforming growth factor-β (TGF-β) signaling. Journal of Biological Chemistry, 2019, 294, 4966-4980.                                                                                                                 | 1.6 | 31        |
| 44 | Transforming growth factorâ€Î² signaling enhancement by longâ€ŧerm exposure to hypoxia in a tumor<br>microenvironment composed of <scp>L</scp> ewis lung carcinoma cells. Cancer Science, 2015, 106,<br>1524-1533.                                                                               | 1.7 | 29        |
| 45 | Stable expression of cytochrome P450IIIA7 cDNA in human breast cancer cell line MCF-7 and its application to cytotoxicity testing. Archives of Biochemistry and Biophysics, 1992, 292, 136-140.                                                                                                  | 1.4 | 28        |
| 46 | Methylation of Smad6 by protein arginineN-methyltransferase 1. FEBS Letters, 2006, 580, 6603-6611.                                                                                                                                                                                               | 1.3 | 27        |
| 47 | Molecular cloning and characterization of a novel human STE20-like kinase, hSLK1The nucleotide<br>sequence reported in this paper has been submitted to the DDBJ/EMBL/GenBank with accession number<br>AB002804.1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1495, 250-262. | 1.9 | 26        |
| 48 | TMED10 Protein Interferes with Transforming Growth Factor (TGF)-β Signaling by Disrupting TGF-β Receptor Complex Formation. Journal of Biological Chemistry, 2017, 292, 4099-4112.                                                                                                               | 1.6 | 25        |
| 49 | Determination of FAD-Binding Domain in Flavin-Containing Monooxygenase 1 (FMO1). Archives of Biochemistry and Biophysics, 1997, 345, 271-277.                                                                                                                                                    | 1.4 | 24        |
| 50 | Expression of Aryl Hydrocarbon Receptor (AhR) and Aryl Hydrocarbon Receptor Nuclear Translocator<br>(Arnt) in Adult Rabbits Known to be Non-Responsive to Cytochrome P -450 1A1 (CYP1A1) Inducers. FEBS<br>Journal, 1996, 242, 512-518.                                                          | 0.2 | 23        |
| 51 | Regulation of CYP1A and CYP3A mRNAs by Ascorbic Acid in Guinea Pigs. Archives of Biochemistry and Biophysics, 1997, 348, 268-277.                                                                                                                                                                | 1.4 | 23        |
| 52 | Molecular Cloning and Characterization of a Novel Putative STE20-like Kinase in Guinea Pigs. Archives of Biochemistry and Biophysics, 1997, 340, 201-207.                                                                                                                                        | 1.4 | 23        |
| 53 | Inhibitory machinery for the TGF-Î <sup>2</sup> family signaling pathway. Growth Factors, 2011, 29, 163-173.                                                                                                                                                                                     | 0.5 | 23        |
| 54 | TMEPAI family: involvement in regulation of multiple signalling pathways. Journal of Biochemistry, 2018, 164, 195-204.                                                                                                                                                                           | 0.9 | 22        |

| #  | Article                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Smad7 Enhances TGF-β-Induced Transcription of c-Jun and HDAC6 Promoting Invasion of Prostate<br>Cancer Cells. IScience, 2020, 23, 101470.                                                                                                                                                          | 1.9 | 22        |
| 56 | Molecular cloning of 25-hydroxyvitamin D-3 24-hydroxylase (Cyp-24) from mouse kidney: its inducibility<br>by vitamin D-3. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1264, 26-28.                                                                                             | 2.4 | 21        |
| 57 | Dissociation of the AhR/ARNT complex by TGF-β/Smad signaling represses CYP1A1 gene expression and inhibits benze[a]pyrene-mediated cytotoxicity. Journal of Biological Chemistry, 2020, 295, 9033-9051.                                                                                            | 1.6 | 21        |
| 58 | Characterization of Ah receptor promoter in human liver cell line, HepG2. Pharmacogenetics and Genomics, 1994, 4, 219-222.                                                                                                                                                                         | 5.7 | 20        |
| 59 | Simultaneous expression of human CYP3A7 and N-acetyltransferase in Chinese hamster CHL cells results in high cytotoxicity for carcinogenic heterocyclic amines. Archives of Biochemistry and Biophysics, 1995, 320, 323-329.                                                                       | 1.4 | 20        |
| 60 | Poor vessel formation in embryos from knock-in mice expressing ALK5 with L45 loop mutation defective in Smad activation. Laboratory Investigation, 2009, 89, 800-810.                                                                                                                              | 1.7 | 19        |
| 61 | Upstream Stimulatory Factor 1 (USF1) Suppresses Induction of CYP1A1 mRNA by 3-Methylcholanthrene<br>(MC) in HepG2 Cells. Biochemical and Biophysical Research Communications, 1997, 240, 293-297.                                                                                                  | 1.0 | 18        |
| 62 | Human Ah receptor cDNA: analysis for highly conserved sequences. Nucleic Acids Research, 1993, 21,<br>3578-3578.                                                                                                                                                                                   | 6.5 | 17        |
| 63 | Studies on Biological Activities of Melanin from Marine Animals. V. Anti-inflammatory Activity of<br>Low-Molecular-Weight Melanoprotein from Squid (Fr. SM II). Chemical and Pharmaceutical Bulletin,<br>1987, 35, 1144-1150.                                                                      | 0.6 | 15        |
| 64 | Implication of TGF-Â as a survival factor during tumour development. Journal of Biochemistry, 2012, 151,<br>559-562.                                                                                                                                                                               | 0.9 | 14        |
| 65 | Evidence for the lack of hepatic n-acetyltransferase in suncus (Suncus murinus). Biochemical<br>Pharmacology, 1995, 50, 1165-1170.                                                                                                                                                                 | 2.0 | 12        |
| 66 | TAL1/SCL Relieves the E2-2-Mediated Repression of VEGFR2 Promoter Activity. Journal of Biochemistry, 2008, 145, 129-135.                                                                                                                                                                           | 0.9 | 12        |
| 67 | Regulation of the TMEPAI promoter by TCF7L2: the C-terminal tail of TCF7L2 is essential to activate the <i>TMEPAI</i> gene. Journal of Biochemistry, 2016, 159, 27-30.                                                                                                                             | 0.9 | 11        |
| 68 | Delayed cutaneous wound healing in Fam129b/Minerva-deficient mice. Journal of Biochemistry, 2012,<br>152, 549-555.                                                                                                                                                                                 | 0.9 | 10        |
| 69 | Decrease in the content of cytochrome P450IIE by fasting in liver microsomes of house musk shrew<br>(Suncus murinus). Biochemical Pharmacology, 1992, 43, 1907-1910.                                                                                                                               | 2.0 | 9         |
| 70 | Gene Structure of MouseCyp3a11:Evidence for an Enhancer Element within Its 5′ Flanking Sequences.<br>Archives of Biochemistry and Biophysics, 1997, 338, 43-49.                                                                                                                                    | 1.4 | 9         |
| 71 | Studies on pharmacological activation of human serum IgG by chemical modification and active<br>subfragments. V Mechanism of anti-inflammatory action of carboxamide-methylated L-chain (Fr. I-L) and<br>H-chain (Fr. I-H) from human serum IgG Journal of Pharmacobio-dynamics, 1986, 9, 799-805. | 0.5 | 8         |
| 72 | Interference of E2â€2â€mediated effect in endothelial cells by FAM96B through its limited expression of E2â€2. Cancer Science, 2011, 102, 1808-1814.                                                                                                                                               | 1.7 | 8         |

| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | TGF- <b><i>β</i></b> Signaling Cooperates with AT Motif-Binding Factor-1 for Repression of the <b><i>α</i></b> -Fetoprotein Promoter. Journal of Signal Transduction, 2014, 2014, 1-11.                                                                                                   | 2.0 | 8         |
| 74 | Endothelial-specific depletion of TGF-β signaling affects lymphatic function. Inflammation and Regeneration, 2021, 41, 35.                                                                                                                                                                | 1.5 | 8         |
| 75 | Inhibitory effect of bis(2-(E-2-alkenoylamino)ethyl) disulfides and 2-(E-octenoylamino)ethyl<br>carbamoylmethyl sulfides on carrageenin-induced paw edema in rats Chemical and Pharmaceutical<br>Bulletin, 1987, 35, 4579-4584.                                                           | 0.6 | 7         |
| 76 | N-oxygenation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by the rat liver flavin-containing<br>monooxygenase expressed in yeast cells. European Journal of Pharmacology - Environmental<br>Toxicology and Pharmacology Section, 1995, 293, 97-100.                                   | 0.8 | 7         |
| 77 | Inhibitory Effect of Tuna Peptide on Endothelin Production in Cultured Endothelial Cells Biological and Pharmaceutical Bulletin, 1994, 17, 886-888.                                                                                                                                       | 0.6 | 6         |
| 78 | Isolation of a promoter region in mouse cytochrome P450 3A (Cyp3A16) gene and its transcriptional control. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1350, 155-158.                                                                                                 | 2.4 | 6         |
| 79 | Involvement of miR-3180-3p and miR-4632-5p in palmitic acid-induced insulin resistance. Molecular and<br>Cellular Endocrinology, 2021, 534, 111371.                                                                                                                                       | 1.6 | 6         |
| 80 | Effect of 26,26,26,27,27,27-Hexafluoro-1,25-Dihydroxyvitamin D <sub>3</sub> on the Expression of<br>Vitamin-D-Responsive Genes in Vitamin-D-Deficient Mice. Pharmacology, 1998, 57, 286-294.                                                                                              | 0.9 | 5         |
| 81 | cDNA cloning of mouse ferredoxin reductase from kidney. Biochimica Et Biophysica Acta Gene<br>Regulatory Mechanisms, 1995, 1264, 159-162.                                                                                                                                                 | 2.4 | 4         |
| 82 | Narciclasine is a novel YAP inhibitor that disturbs interaction between YAP and TEAD4. BBA Advances, 2021, 1, 100008.                                                                                                                                                                     | 0.7 | 4         |
| 83 | Inhibitory effect of bis(2-(E-2-octenoylamino)ethyl) disulfide and 2-(E-octenoylamino)ethyl<br>carbamoylmethyl sulfide on various inflammation models Chemical and Pharmaceutical Bulletin,<br>1987, 35, 4585-4591.                                                                       | 0.6 | 3         |
| 84 | Studies on pharmacological activation of human serum immunoglobulin G(IgG) by chemical<br>modification and active subfragments. VI. Anti-allergic activity of carboxamidemethylated Fc(CM-Fc)<br>fragment from human serum IgG Chemical and Pharmaceutical Bulletin, 1987, 35, 4935-4939. | 0.6 | 3         |
| 85 | Ligand-dependent selection of the receptor gene: segregation of IL-2 binding activity and anti-Tac<br>reactivity by a single amino acid alteration in the Tac antigen (p55). Immunology Letters, 1989, 20,<br>139-147.                                                                    | 1.1 | 3         |
| 86 | Studies on Thermophile Products. VIII. Isolation of Bacillus stearothermophilus UBT8038, a<br>Component That Inhibits Antigen Presentation on Mouse Macrophages Biological and Pharmaceutical<br>Bulletin, 1994, 17, 889-893.                                                             | 0.6 | 3         |
| 87 | Signal transduction mechanisms for members of the TGF- $\hat{l}^2$ family. , 2001, , 11-40.                                                                                                                                                                                               |     | 3         |
| 88 | Studies on Thermophile Products. VII. Effect of 1,3-Di-14-methylpentadecanoyl Glycerol and Its Related<br>Isofatty Acids on T Cell Proliferation in Vitro Biological and Pharmaceutical Bulletin, 1994, 17,<br>850-852.                                                                   | 0.6 | 2         |
| 89 | Studies on Thermophile Products. IX. Isofatty Acid-Containing Phosphatidylglycerol That Enhances the<br>Induction of Concanavalin A-Activated Suppressor T Cells Biological and Pharmaceutical Bulletin,<br>1994, 17, 1171-1175.                                                          | 0.6 | 2         |
| 90 | Simultaneous expression of ferredoxin, ferredoxin reductase and P450 in COS7 cells. Biochimica Et<br>Biophysica Acta - Bioenergetics, 1997, 1318, 284-290.                                                                                                                                | 0.5 | 1         |

| #  | Article                                                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Studies on Thermophile Products. X. Further Biological Properties of Isofatty Acid-Containing<br>Phosphatidylglycerol That Enhances the Induction of Suppressor T Cells Biological and<br>Pharmaceutical Bulletin, 1994, 17, 1446-1450.                                                                                                                    | 0.6 | Ο         |
| 92 | Pharmacological Activity of Chemically Modified Subfragment from Human Serum IgG. XIV. Inhibitory<br>Effect of Carboxamide-Methylated Light Chain (G1L) on Tyrosine Phosphorylation and Tumor Necrosis<br>FactorALPHA. Production from Murine Macrophages Stimulated by Lipopolysaccharide Biological<br>and Pharmaceutical Bulletin, 1995, 18, 1377-1381. | 0.6 | 0         |
| 93 | Opposite effects of isoniazid and fasting on the expression of CYP2E1 protein and mRNA in house musk shrew (Suncus murinus). IUBMB Life, 1997, 41, 293-301.                                                                                                                                                                                                | 1.5 | Ο         |
| 94 | Molecular cloning and regulation of a novel guinea pig cytochrome P450 (CYP3A20) which differs from guinea pig CYP3A14 in only two amino acid residues. IUBMB Life, 1998, 44, 1245-1253.                                                                                                                                                                   | 1.5 | 0         |
| 95 | Vascular deficiency in ALK5 knock-in mice. Vascular Pharmacology, 2006, 45, e137.                                                                                                                                                                                                                                                                          | 1.0 | 0         |
| 96 | TMEPAI, a transmembrane TGF-β-inducible protein, sequesters Smad proteins in TGF-β signaling. Nature<br>Precedings, 2007, , .                                                                                                                                                                                                                              | 0.1 | 0         |
| 97 | Active TGF-Î <sup>2</sup> signaling in hypoxic area. Cancer Science, 2015, 106, November cover-November cover.                                                                                                                                                                                                                                             | 1.7 | 0         |
| 98 | Negative Regulation of the TGF-β Family Signal Pathway by Inhibitory Smads and Their Involvement in<br>Cancer and Fibrosis. , 2008, , 649-661.                                                                                                                                                                                                             |     | 0         |