
Lourdes Schnaas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6208068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-Level Environmental Lead Exposure and Children's Intellectual Function: An International Pooled Analysis. Environmental Health Perspectives, 2005, 113, 894-899.	2.8	1,750
2	Fetal Lead Exposure at Each Stage of Pregnancy as a Predictor of Infant Mental Development. Environmental Health Perspectives, 2006, 114, 1730-1735.	2.8	306
3	Reduced Intellectual Development in Children with Prenatal Lead Exposure. Environmental Health Perspectives, 2006, 114, 791-797.	2.8	254
4	Early Postnatal Blood Manganese Levels and Children's Neurodevelopment. Epidemiology, 2010, 21, 433-439.	1.2	234
5	Associations of Early Childhood Manganese and Lead Coexposure with Neurodevelopment. Environmental Health Perspectives, 2012, 120, 126-131.	2.8	183
6	In Utero p,p′-DDE Exposure and Infant Neurodevelopment: A Perinatal Cohort in Mexico. Environmental Health Perspectives, 2007, 115, 435-439.	2.8	157
7	Effect of Maternal Bone Lead on Length and Head Circumference of Newborns and 1-Month-Old Infants. Archives of Environmental Health, 2002, 57, 482-488.	0.4	90
8	Urinary 3,5,6-trichloro-2-pyridinol (TCPY) in pregnant women from Mexico City: Distribution, temporal variability, and relationship with child attention and hyperactivity. International Journal of Hygiene and Environmental Health, 2014, 217, 405-412.	2.1	89
9	Association between Prenatal Lead Exposure and Blood Pressure in Children. Environmental Health Perspectives, 2012, 120, 445-450.	2.8	80
10	Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) Project. BMJ Open, 2019, 9, e030427.	0.8	76
11	Relationships between lead biomarkers and diurnal salivary cortisol indices in pregnant women from Mexico City: a cross-sectional study. Environmental Health, 2014, 13, 50.	1.7	75
12	Prenatal Lead Exposure and Weight of 0- to 5-Year-Old Children in Mexico City. Environmental Health Perspectives, 2011, 119, 1436-1441.	2.8	73
13	Dentine biomarkers of prenatal and early childhood exposure to manganese, zinc and lead and childhood behavior. Environment International, 2018, 121, 148-158.	4.8	73
14	Association between birth weight and DNA methylation of <i>IGF2</i> , glucocorticoid receptor and repetitive elements LINE-1 and <i>Alu</i> . Epigenomics, 2013, 5, 271-281.	1.0	72
15	Prenatal <i>p,p´</i> -DDE Exposure and Neurodevelopment among Children 3.5–5 Years of Age. Environmental Health Perspectives, 2013, 121, 263-268.	2.8	72
16	Childhood Blood Lead Levels and Symptoms of Attention Deficit Hyperactivity Disorder (ADHD): A Cross-Sectional Study of Mexican Children. Environmental Health Perspectives, 2016, 124, 868-874.	2.8	72
17	Maternal self-esteem, exposure to lead, and child neurodevelopment. NeuroToxicology, 2008, 29, 278-285.	1.4	62
18	Brainstem auditory evoked response at five years and prenatal and postnatal blood lead. Neurotoxicology and Teratology, 2000, 22, 503-510.	1.2	57

LOURDES SCHNAAS

#	Article	IF	CITATIONS
19	Maternal stress modifies the effect of exposure to lead during pregnancy and 24-month old children's neurodevelopment. Environment International, 2017, 98, 191-197.	4.8	56
20	Assessing windows of susceptibility to lead-induced cognitive deficits in Mexican children. NeuroToxicology, 2012, 33, 1040-1047.	1.4	55
21	Prenatal and postnatal stress and wheeze in Mexican children. Annals of Allergy, Asthma and Immunology, 2016, 116, 306-312.e1.	0.5	55
22	Prenatal Mancozeb Exposure, Excess Manganese, and Neurodevelopment at 1 Year of Age in the Infants' Environmental Health (ISA) Study. Environmental Health Perspectives, 2018, 126, 057007.	2.8	54
23	The association of lead exposure during pregnancy and childhood anthropometry in the Mexican PROGRESS cohort. Environmental Research, 2017, 152, 226-232.	3.7	50
24	Prenatal dichlorodiphenyldichloroethylene (DDE) exposure and neurodevelopment: A follow-up from 12 to 30 months of age. NeuroToxicology, 2009, 30, 1162-1165.	1.4	49
25	Blood Lead Secular Trend in a Cohort of Children in Mexico City (1987–2002). Environmental Health Perspectives, 2004, 112, 1110-1115.	2.8	47
26	Prenatal particulate air pollution exposure and sleep disruption in preschoolers: Windows of susceptibility. Environment International, 2019, 124, 329-335.	4.8	45
27	Prenatal lead exposure and fetal growth: Smaller infants have heightened susceptibility. Environment International, 2017, 99, 228-233.	4.8	44
28	Prenatal manganese exposure and intrinsic functional connectivity of emotional brain areas in children. NeuroToxicology, 2018, 64, 85-93.	1.4	42
29	Uncovering neurodevelopmental windows of susceptibility to manganese exposure using dentine microspatial analyses. Environmental Research, 2018, 161, 588-598.	3.7	41
30	Toddler temperament and prenatal exposure to lead and maternal depression. Environmental Health, 2016, 15, 71.	1.7	38
31	Children's Blood Lead Concentrations from 1988 to 2015 in Mexico City: The Contribution of Lead in Air and Traditional Lead-Glazed Ceramics. International Journal of Environmental Research and Public Health, 2018, 15, 2153.	1.2	37
32	Identifying critical windows of prenatal particulate matter (PM2.5) exposure and early childhood blood pressure. Environmental Research, 2020, 182, 109073.	3.7	36
33	Particulate air pollution exposure during pregnancy and postpartum depression symptoms in women in Mexico City. Environment International, 2020, 134, 105325.	4.8	36
34	Windows of Lead Exposure Sensitivity, Attained Height, and Body Mass Index at 48 Months. Journal of Pediatrics, 2012, 160, 1044-1049.	0.9	35
35	Prenatal PM2.5 exposure and behavioral development in children from Mexico City. NeuroToxicology, 2020, 81, 109-115.	1.4	35
36	Phthalate exposure during pregnancy and long-term weight gain in women. Environmental Research, 2019, 169, 26-32.	3.7	33

LOURDES SCHNAAS

#	Article	IF	CITATIONS
37	Time-varying associations between prenatal metal mixtures and rapid visual processing in children. Environmental Health, 2019, 18, 92.	1.7	31
38	Prenatal co-exposure to manganese and depression and 24-months neurodevelopment. NeuroToxicology, 2018, 64, 134-141.	1.4	30
39	Prenatal lead exposure modifies the effect of shorter gestation on increased blood pressure in children. Environment International, 2018, 120, 464-471.	4.8	30
40	Prenatal manganese and cord blood mitochondrial DNA copy number: Effect modification by maternal anemic status. Environment International, 2019, 126, 484-493.	4.8	28
41	Differential association of lead on length by zinc status in two-year old Mexican children. Environmental Health, 2015, 14, 95.	1.7	27
42	Altered cord blood mitochondrial DNA content and pregnancy lead exposure in the PROGRESS cohort. Environment International, 2019, 125, 437-444.	4.8	27
43	A Dopamine Receptor (DRD2) but Not Dopamine Transporter (DAT1) Gene Polymorphism is Associated with Neurocognitive Development of Mexican Preschool Children with Lead Exposure. Journal of Pediatrics, 2011, 159, 638-643.	0.9	24
44	Prenatal PM2.5 exposure in the second and third trimesters predicts neurocognitive performance at age 9–10 years: A cohort study of Mexico City children. Environmental Research, 2021, 202, 111651.	3.7	24
45	Mercury and psychosocial stress exposure interact to predict maternal diurnal cortisol during pregnancy. Environmental Health, 2015, 14, 28.	1.7	22
46	Quality of Prenatal and Childhood Diet Predicts Neurodevelopmental Outcomes among Children in Mexico City. Nutrients, 2018, 10, 1093.	1.7	20
47	Prenatal Lead Exposure Modifies the Impact of Maternal Self-Esteem on Children's Inattention Behavior. Journal of Pediatrics, 2015, 167, 435-441.	0.9	19
48	Subconstructs of the Edinburgh Postpartum Depression Scale in a postpartum sample in Mexico City. Journal of Affective Disorders, 2018, 238, 142-146.	2.0	18
49	Blood Lead Secular Trend in a Cohort of Children in Mexico City. II. 1990–1995. Archives of Environmental Health, 2000, 55, 245-249.	0.4	16
50	DNA methylation at birth potentially mediates the association between prenatal lead (Pb) exposure and infant neurodevelopmental outcomes. Environmental Epigenetics, 2021, 7, dvab005.	0.9	15
51	Early motor development and cognitive abilities among Mexican preschoolers. Child Neuropsychology, 2018, 24, 1015-1025.	0.8	14
52	Prenatal lead exposure and cord blood DNA methylation in PROGRESS: an epigenome-wide association study. Environmental Epigenetics, 2020, 6, dvaa014.	0.9	14
53	Dietary fluoride intake during pregnancy and neurodevelopment in toddlers: A prospective study in the progress cohort. NeuroToxicology, 2021, 87, 86-93.	1.4	13
54	Blood manganese levels during pregnancy and postpartum depression: A cohort study among women in Mexico. NeuroToxicology, 2020, 76, 183-190.	1.4	12

LOURDES SCHNAAS

#	Article	IF	CITATIONS
55	Estimating the causal effect of prenatal lead exposure on prepulse inhibition deficits in children and adolescents. NeuroToxicology, 2020, 78, 116-126.	1.4	12
56	Maternal dietary intake of polyunsaturated fatty acids modifies association between prenatal DDT exposure and child neurodevelopment: A cohort study. Environmental Pollution, 2018, 238, 698-705.	3.7	11
57	The influence of maternal anxiety and cortisol during pregnancy on childhood anxiety symptoms. Psychoneuroendocrinology, 2022, 139, 105704.	1.3	11
58	Prenatal p,p′-DDE exposure and establishment of lateralization and spatial orientation in Mexican preschooler. NeuroToxicology, 2015, 47, 1-7.	1.4	10
59	Early Gestational Exposure to High-Molecular-Weight Phthalates and Its Association with 48-Month-Old Children's Motor and Cognitive Scores. International Journal of Environmental Research and Public Health, 2020, 17, 8150.	1.2	10
60	Polyunsaturated fatty acids and child neurodevelopment among a population exposed to DDT: a cohort study. Environmental Health, 2019, 18, 17.	1.7	8
61	Maternal Prenatal Psychosocial Stress and Prepregnancy BMI Associations with Fetal Iron Status. Current Developments in Nutrition, 2020, 4, nzaa018.	0.1	8
62	Prenatal metal mixture concentrations and reward motivation in children. NeuroToxicology, 2022, 88, 124-133.	1.4	7
63	Association between prenatal metal exposure and adverse respiratory symptoms in childhood. Environmental Research, 2022, 205, 112448.	3.7	7
64	Caregiving and infants' neurodevelopment in rural Costa Rica: Results from the Infants' Environmental Health Study (ISA). NeuroToxicology, 2019, 74, 100-107.	1.4	6
65	Prenatal urinary concentrations of phthalate metabolites and behavioral problems in Mexican children: The Programming Research in Obesity, Growth Environment and Social Stress (PROGRESS) study. Environmental Research, 2021, 201, 111338.	3.7	6
66	Socio-demographic predictors of prepulse inhibition: A prospective study in children and adolescents from Mexico City. Biological Psychology, 2019, 145, 8-16.	1.1	4
67	Using the delayed spatial alternation task to assess environmentally associated changes in working memory in very young children. NeuroToxicology, 2020, 77, 71-79.	1.4	3
68	Mitochondrial DNA Copy Number Adaptation as a Biological Response Derived from an Earthquake at Intrauterine Stage. International Journal of Environmental Research and Public Health, 2021, 18, 11771.	1.2	3
69	Prenatal lead exposure modifies the association of maternal self-esteem with child adaptive ability. International Journal of Hygiene and Environmental Health, 2019, 222, 68-75.	2.1	2