Dechao Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6207917/publications.pdf

Version: 2024-02-01

393982 500791 38 880 19 28 h-index citations g-index papers 38 38 38 737 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Construction strategies and thermal energy storage applications of shapeâ€stabilized phase change materials. Journal of Applied Polymer Science, 2022, 139, 51550.	1.3	19
2	Tailoring superhydrophobic PDMS/CeFe2O4/MWCNTs nanocomposites with conductive network for highly efficient microwave absorption. Chemical Engineering Journal, 2022, 432, 134226.	6.6	31
3	Construction of boron nitride nanosheets-based nanohybrids by electrostatic self-assembly for highly thermally conductive composites. Advanced Composites and Hybrid Materials, 2022, 5, 3201-3211.	9.9	22
4	Interfacial design of nanocellulose/boron nitride nanosheets composites via calcium ion cross-linking for enhanced thermal conductivity and mechanical robustness. Composites Part A: Applied Science and Manufacturing, 2022, 158, 106970.	3.8	15
5	UV-shielding and strong poly(vinyl alcohol) composite films reinforced with zinc oxide@polydopamine core-shell nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129311.	2.3	4
6	Fabrication and characterization of a novel polyurethane microencapsulated phase change material for thermal energy storage. Progress in Organic Coatings, 2021, 151, 106006.	1.9	20
7	Facile preparation and flame retardancy mechanism of cyclophosphazene derivatives for highly <scp>flameâ€retardant</scp> silicone rubber composites. Journal of Applied Polymer Science, 2021, 138, 50297.	1.3	13
8	Large-scale and green production of multi-layer graphene in deep eutectic solvents. Journal of Materials Science, 2021, 56, 4615-4623.	1.7	12
9	Surface engineering of nanoparticles for highly efficient <scp>UV</scp> â€shielding composites. Polymers for Advanced Technologies, 2021, 32, 6-16.	1.6	18
10	Synergistic improvement of mechanical and thermal properties in epoxy composites via polyimide microspheres. Journal of Applied Polymer Science, 2021, 138, 50869.	1.3	3
11	Recent advances in carbon nanotubes-based microwave absorbing composites. Ceramics International, 2021, 47, 23749-23761.	2.3	63
12	<scp>UV</scp> â€"thermalâ€cured cycloaliphatic epoxy composites with enhanced mechanical properties via Ca ²⁺ â€modified nanocrystalline cellulose. Polymer International, 2021, 70, 1692-1700.	1.6	3
13	A new reutilization strategy of waste printed circuit board nonmetal powders for constructing superhydrophobic coatings. Polymer Engineering and Science, 2021, 61, 2193-2199.	1.5	5
14	Synergetic integration of thermal conductivity and flame resistance in nacreâ€like nanocellulose composites. Carbohydrate Polymers, 2021, 264, 118058.	5.1	28
15	Cinnamic acid-functionalized ZnO nanoparticles for constructing UV-shielding and mechanically robust polyvinyl butyral composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127438.	2.3	10
16	Multifunctional UV-shielding nanocellulose films modified with halloysite nanotubes-zinc oxide nanohybrid. Cellulose, 2020, 27, 401-413.	2.4	44
17	Nanocellulose as a Sustainable Building Block to Construct Eco-Friendly Thermally Conductive Composites. Industrial & Engineering Chemistry Research, 2020, 59, 19465-19484.	1.8	17
18	Rational design of nanohybrids for highly thermally conductive polymer composites. Composites Communications, 2020, 21, 100427.	3.3	38

#	Article	IF	CITATIONS
19	Synthesis and characterization of microencapsulated methyl laurate with polyurethane shell materials via interfacial polymerization in Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124958.	2.3	29
20	Dual Bio-Inspired Design of Highly Thermally Conductive and Superhydrophobic Nanocellulose Composite Films. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11115-11125.	4.0	64
21	Reutilization of waste printed circuit boards nonmetallic powders in elastomer composites: Significant improvements of curing and mechanical properties. Polymer Composites, 2020, 41, 2224-2232.	2.3	5
22	In situ assembly of halloysite nanotubes@cerium oxide nanohybrid for highly UV-shielding and superhydrophobic coating. Journal of Alloys and Compounds, 2019, 811, 151986.	2.8	15
23	Mesoporous silica as nanocarrier of antioxidant for highly anti-aging elastomer composites. Polymer Degradation and Stability, 2019, 169, 108987.	2.7	11
24	Nonsolvent-assisted surface modification of silica by silane and antioxidant for rubber reinforcement. Polymer Testing, 2019, 78, 105949.	2.3	22
25	Immobilization of rubber additive on graphene for high-performance rubber composites. Journal of Colloid and Interface Science, 2019, 550, 190-198.	5.0	24
26	Magnetically aligning multilayer graphene to enhance thermal conductivity of silicone rubber composites. Journal of Applied Polymer Science, 2019, 136, 47951.	1.3	27
27	Functionalized Halloysite Nanotubes–Silica Hybrid for Enhanced Curing and Mechanical Properties of Elastomers. Polymers, 2019, 11, 883.	2.0	17
28	Enhancing interfacial and mechanical strength of styreneâ€butadiene rubber composites via <i>in situ</i> fabricated halloysite nanotubes/silica nano hybrid. Polymer Composites, 2019, 40, 677-684.	2.3	7
29	Enhanced Mechanical Performance and Antioxidative Efficiency of Styrene–Butadiene Rubber via 4-Aminodiphenylamine Functionalized Mesoporous Silica. Industrial & Digineering Chemistry Research, 2018, 57, 4935-4940.	1.8	20
30	Enhanced interfacial interaction and antioxidative behavior of novel halloysite nanotubes/silica hybrid supported antioxidant in styrene-butadiene rubber. Applied Surface Science, 2018, 441, 798-806.	3.1	31
31	Characterization of Waste Printed Circuit Boards Nonmetals and its Reutilization as Reinforcing Filler in Unsaturated Polyester Resin. Journal of Polymers and the Environment, 2018, 26, 1311-1319.	2.4	21
32	In-situ fabrication of halloysite nanotubes/silica nano hybrid and its application in unsaturated polyester resin. Applied Surface Science, 2017, 407, 130-136.	3.1	38
33	Enhancing interfacial interaction and mechanical properties of styrene-butadiene rubber composites via silica-supported vulcanization accelerator. Composites Part A: Applied Science and Manufacturing, 2017, 96, 129-136.	3.8	55
34	Method for improving the mechanical performance and thermal stability of unsaturated polyester resin/waste-printed circuit board nonmetals composites via isocyanate chemistry. Journal of Applied Polymer Science, 2017, 134, 45129.	1.3	6
35	A novel hybrid filler of halloysite nanotubes/silica fabricated by electrostatic self-assembly. Materials Letters, 2017, 188, 327-330.	1.3	23
36	Surface modification of halloysite nanotubes by vulcanization accelerator and properties of styrene-butadiene rubber nanocomposites with modified halloysite nanotubes. Applied Surface Science, 2016, 366, 193-201.	3.1	40

#	Article	IF	CITATIONS
37	A facile and green preparation of nanosilica-supported antioxidant and its reinforcement and antioxidation effect on styrene-butadiene rubber. International Journal of Polymer Analysis and Characterization, 2016, 21, 185-197.	0.9	13
38	Reinforcement and reinforcing mechanism of styrene–butadiene rubber by antioxidant-modified silica. Composites Part A: Applied Science and Manufacturing, 2015, 78, 303-310.	3.8	47