Florencio Moreno Jiménez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6207830/publications.pdf

Version: 2024-02-01

48 papers

1,865 citations

471509 17 h-index 265206 42 g-index

50 all docs

50 docs citations

times ranked

50

1682 citing authors

#	Article	IF	CITATIONS
1	BINOL blocks as accessible triplet state modulators in BODIPY dyes. Chemical Communications, 2022, 58, 6385-6388.	4.1	4
2	Isopinocampheyl-based <i>C</i> -BODIPYs: a model strategy to construct cost-effective boron-chelate emitters of circularly polarized light. Organic Chemistry Frontiers, 2021, 8, 4752-4757.	4.5	4
3	BINOLated aminostyryl BODIPYs: a workable organic molecular platform for NIR circularly polarized luminescence. Chemical Communications, 2021, 57, 5750-5753.	4.1	26
4	Insight into the Influence of the Chiral Molecular Symmetry on the Chiroptics of Fluorescent BINOL-Based Boron Chelates. Chemistry Proceedings, 2021, 3, .	0.1	2
5	Evaluación del impacto del perfil del alumnado y su formación preuniversitaria en la asignatura de QuÃmica del primer curso de grado en tres facultades de ciencias de la UCM. Qurriculum Revista De TeorÃa Investigación Y Práctica Educativa, 2021, 34, 53-65.	0.4	3
6	Influence of At-Bridge Nitro Groups on the Photophysics and Chiroptics of helicoBODIPYs: A Step Forward towards the Development of New Chiroptical Sensors., 2021, 8,.		0
7	Exploring New Mitochondria-Targetable Theragnostic styrylBODIPYs. , 2021, 8, .		1
8	Manipulating Chargeâ€Transfer States in BODIPYs: A Model Strategy to Rapidly Develop Photodynamic Theragnostic Agents. Chemistry - A European Journal, 2020, 26, 601-605.	3.3	20
9	Multichromophoric COO-BODIPYs: an advantageous design for the development of energy transfer and electron transfer systems. Chemical Communications, 2020, 56, 13025-13028.	4.1	8
10	BCl3-Activated Synthesis of COO-BODIPY Laser Dyes: General Scope and High Yields under Mild Conditions. Journal of Organic Chemistry, 2020, 85, 4594-4601.	3.2	20
11	Towards Efficient and Photostable Redâ€Emitting Photonic Materials Based on Symmetric Allâ€BODIPYâ€Triads, â€Pentads, and â€Hexads. Chemistry - A European Journal, 2019, 25, 14959-14971.	3.3	8
12	Synthetic Approach to Readily Accessible Benzofuran-Fused Borondipyrromethenes as Red-Emitting Laser Dyes. Journal of Organic Chemistry, 2019, 84, 2523-2541.	3.2	31
13	Modulating ICT emission: a new strategy to manipulate the CPL sign in chiral emitters. Chemical Communications, 2019, 55, 1631-1634.	4.1	59
14	Chiral Microneedles from an Achiral Bis(boron dipyrromethene): Spontaneous Mirror Symmetry Breaking Leading to a Promising Photoluminescent Organic Material. Langmuir, 2019, 35, 5021-5028.	3.5	6
15	Exploring N-BODIPYs as Privileged Scaffolds to Build Off/On Fluorescent Sensors by PET. Proceedings (mdpi), 2019, 41, .	0.2	2
16	C*-BODIPYs: Exploring a New Strategy to Transfer Chirality towards BODIPY Chiroptics. Proceedings (mdpi), 2019, 41, .	0.2	2
17	Tailoring the Molecular Skeleton of Azaâ€BODIPYs to Design Photostable Redâ€Lightâ€Emitting Laser Dyes. ChemPhotoChem, 2019, 3, 75-85.	3.0	11
18	Stereochemical and Steric Control of Photophysical and Chiroptical Properties in Bichromophoric Systems. Chemistry - A European Journal, 2018, 24, 3802-3815.	3.3	11

#	Article	IF	CITATIONS
19	Chiral Organic Dyes Endowed with Circularly Polarized Laser Emission. Journal of Physical Chemistry C, 2017, 121, 5287-5292.	3.1	116
20	Speeding up heterogeneous catalysis with an improved highly reusable catalyst for the preparation of enantioenriched secondary alcohols. Reactive and Functional Polymers, 2017, 113, 23-30.	4.1	3
21	<i>N</i> â€BODIPYs Come into Play: Smart Dyes for Photonic Materials. Chemistry - A European Journal, 2017, 23, 9383-9390.	3.3	30
22	Circularly polarized laser emission in optically active organic dye solutions. Physical Chemistry Chemical Physics, 2017, 19, 22088-22093.	2.8	37
23	Modulation of ICT probability in bi(polyarene)-based O-BODIPYs: towards the development of low-cost bright arene-BODIPY dyads. Dalton Transactions, 2017, 46, 11830-11839.	3.3	22
24	Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence. Chemistry - A European Journal, 2016, 22, 8805-8808.	3.3	58
25	Push–pull flexibly-bridged bis(haloBODIPYs): solvent and spacer switchable red emission. Dalton Transactions, 2016, 45, 11839-11848.	3.3	23
26	Circularly Polarized Luminescence from Simple Organic Molecules. Chemistry - A European Journal, 2015, 21, 13488-13500.	3.3	773
27	Preparation of dipyrrins from F-BODIPYs by treatment with methanesulfonic acids. RSC Advances, 2015, 5, 68676-68680.	3.6	9
28	Photochemical Oxidation of Thioketones by Singlet Molecular Oxygen Revisited: Insights into Photoproducts, Kinetics, and Reaction Mechanism. Journal of Organic Chemistry, 2015, 80, 10575-10584.	3.2	18
29	Spiranic BODIPYs: a ground-breaking design to improve the energy transfer in molecular cassettes. Chemical Communications, 2014, 50, 12765-12767.	4.1	30
30	Circularly Polarized Luminescence by Visible-Light Absorption in a Chiral <i>O-</i> BODIPY Dye: Unprecedented Design of CPL Organic Molecules from Achiral Chromophores. Journal of the American Chemical Society, 2014, 136, 3346-3349.	13.7	325
31	Electron ionization-induced fragmentation of bridgehead-substituted norbornan-2-ones derived from fenchone. International Journal of Mass Spectrometry, 2013, 334, 49-57.	1.5	0
32	Unprecedented induced axial chirality in a molecular BODIPY dye: strongly bisignated electronic circular dichroism in the visible region. Chemical Communications, 2013, 49, 11641.	4.1	42
33	The Mechanism of Hydrolysis of Aryldiazonium Ions Revisited: Marcus Theory vs. Canonical Variational Transition State Theory. European Journal of Organic Chemistry, 2013, 2013, 6098-6107.	2.4	17
34	Cheap and Longâ€Life Reusable Polymer for Asymmetric Organozinc Catalysis Based on Camphorâ€Derived Hydroxyamides. Chirality, 2012, 24, 771-777.	2.6	3
35	Electron ionization mass spectral studies of bridgeheadâ€substituted norbornanâ€2â€ones: camphor derivatives. Rapid Communications in Mass Spectrometry, 2011, 25, 395-409.	1.5	4
36	Electron ionisation mass spectral studies of bridgeheadâ€fused î" ² â€norbornanethiazolines. Rapid Communications in Mass Spectrometry, 2009, 23, 856-862.	1.5	4

#	Article	IF	CITATIONS
37	Determination of the oxygen permeability (Dk) of contact lenses with a fiber-optic luminescent sensor system. Sensors and Actuators B: Chemical, 2007, 126, 394-399.	7.8	8
38	A novel modification of the Ritter reaction: stereoselective synthesis of bridgehead-fused Δ2-norbornanethiazolines from thiocamphor and thiofenchone. Tetrahedron: Asymmetry, 2006, 17, 2970-2975.	1.8	10
39	A short and convenient procedure for the stereoselective synthesis of 2-hydroxy-1-norbornanesulfonamides. Tetrahedron: Asymmetry, 2004, 15, 293-298.	1.8	7
40	A Novel and Simple Procedure for the Enantiospecific Synthesis of Bridgehead Norbornane Thioethers and Thiocyanates ChemInform, 2003, 34, no.	0.0	0
41	A novel and simple procedure for the enantiospecific synthesis of bridgehead norbornane thioethers and thiocyanates. Tetrahedron: Asymmetry, 2002, 13, 2635-2639.	1.8	4
42	Enantiospecific synthesis of substituted 1-norbornanesulfonic acids and 1-norbornanesulfenic and sulfonic acid derivatives. Tetrahedron: Asymmetry, 2000, 11, 1709-1717.	1.8	12
43	About the timing of Wagner-Meerwein and Nametkin rearrangements, 6,2-hydride shift, proton elimination and cation trapping in 2-norbornyl carbocations. Tetrahedron, 1998, 54, 4607-4614.	1.9	19
44	Dielsâ^'Alder Cycloadducts of [60]Fullerene with Pyrimidineo-Quinodimethanes. Journal of Organic Chemistry, 1998, 63, 6807-6813.	3.2	36
45	Enantiospecific synthesis of substituted 1-norbornyl trifluoromethanethiosulfonates and 1-norbornanethiols. Tetrahedron: Asymmetry, 1997, 8, 3031-3034.	1.8	19
46	New procedures for the synthesis of heterocyclic substituted and 2,4-difunctionalized pyrimidines. Tetrahedron, 1996, 52, 7973-7982.	1.9	18
47	Exploring new structures for the development of CPL-dyes based on flexible bis(BODIPY)s ., 0,,.		0
48	<pre>Development of molecular cassettes for the excitation energy transfer in the red region of the spectrum., 0, , .</pre>		0