AntÃ'nio Fernando Bertachini De Almei

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6207746/publications.pdf
Version: 2024-02-01

Analysis of the orbital evolution of space debris using a solar sail and natural forces. Advances in Space Research, 2022, 70, 125-143.

```
9 Using low Lift-to-Drag spacecraft to perform upper atmospheric Aero-Cravity Assisted Maneuvers.
```

$9 \quad$ Advances in Space Research, 2022, 70, 1032-1047.

Trajectories Derived from Periodic Orbits around the Lagrangian Point L1 and Lunar Swing-Bys:

```
11 Dynamics of a Particle in 3:1 Tesseral Resonance with the Dwarf Planet Haumea. Symmetry, 2022, 14,
    1378.
```

 Effects of Bank Angle During Powered Aerogravity-Assist Maneuver. Journal of Spacecraft and
 19 Searching for orbits to observe the poles of celestial bodies. Advances in Space Research, 2020, 66,
$2378-2401$.
Perturbation Maps and the ring of Haumea. Monthly Notices of the Royal Astronomical Society, 2020,
$496,2085-2097$.

Generalizing the Bicircular Restricted Four-Body Problem. Journal of Guidance, Control, and

```
Averaged model to study long-term dynamics of a probe about Mercury. Celestial Mechanics and
Dynamical Astronomy, 2018, 130, 1.
```

Analysis of impulsive maneuvers to keep orbits around the asteroid 2001SN263. Astrophysics and Space
1.4 Science, 2018, 363, 1.
38 Science, 2018, 363, 1.
Some characteristics of orbits for a spacecraft around Mercury. Computational and Applied

1.3
Mathematics, 2018, 37, 267-281.

Analytical study of the swing-by maneuver in an elliptical system. Astrophysics and Space Science, 2018,
1.4
41 Analyzing â€œintegral indicesâ€oto quantify the effects of a perturbing force in the harmonic and Duffin
oscillators. Computational and Applied Mathematics, 2018, 37, 7-15.
42 Planar powered Swing-By maneuvers to brake a spacecraft. Computational and Applied Mathematics,
$2018,37,202-219$.
Celestial mechanics, spacecrafts, and 50th years of the first humans on the Moon. Computational and
Applied Mathematics, 2018, 37, 1-6.

44 Tetrahedron formation of nanosatellites with single-input control. Astrophysics and Space Science, 2018, 363, 1.
1.42

45	Building an â€œEscape Portalâ€owith Tethers Fixed in Asteroids. Journal of the Astronautical Sciences, 2018, 65, 355-375.	1.5	1
46	Analytical study of the powered Swing-By maneuver for elliptical systems and analysis of its efficiency. Astrophysics and Space Science, 2018, 363, 1.	1.4	6
47	Spacecraft motion around artificial equilibrium points. Nonlinear Dynamics, 2018, 91, 1473-1489.	5.2	4
48	Equilibrium points in the restricted synchronous three-body problem using a mass dipole model. Astrophysics and Space Science, 2017, 362, 1.	1.4	10
49	Powered aero-gravity-assist maneuvers considering lift and drag around the Earth. Astrophysics and Space Science, 2017, 362, 1.	1.4	8

50 Effects of the eccentricity of the primaries in powered Swing-By maneuvers. Advances in Space
2.6

23
Research, 2017, 59, 2071-2087.

Mapping stable direct and retrograde orbits around the triple system of asteroids (45) Eugenia.
Monthly Notices of the Royal Astronomical Society, 2017, 472, 3999-4006.
4.4

3

Lifetime of a spacecraft around a synchronous system of asteroids using a dipole model. Astrophysics
and Space Science, 2017, 362, 1.

53
 Applications of celestial mechanics in natural objects and spacecrafts. Computational and Applied
 Mathematics, 2017, 36, 1463-1469.

$55 \quad$ A numerical mapping of energy gains in a powered Swing-By maneuver. Nonlinear Dynamics, 2017, 89, 791-818.

Dynamics in the vicinity of (101955) Bennu: solar radiation pressure effects in equatorial orbits. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2687-2701.
4.4

Searching for some natural orbits to observe the double asteroid 2002CE26. Astrophysics and Space Science, 2017, 362, 1.

The dynamical environment of asteroid 21 Lutetia according to different internal models. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3552-3560.

Studying the energy variation in the powered Swing-By in the Sun-Mercury system. Journal of Physics:
Conference Series, 2017, 911, 012007.
0.4

On the use of a variable coefficient of reflectivity associated with an augmented area-to-mass ratio to de-orbit CubeSats. Journal of Physics: Conference Series, 2017, 911, 012009.

Searching for orbits around the triple system 45 Eugenia. Journal of Physics: Conference Series, 2017,
911, 012001.

Equilibrium points in the asteroid 2001SN263. Journal of Physics: Conference Series, 2017, 911, 012023.

Lifetime maps for orbits around Callisto using a double-averaged model. Astrophysics and Space
Science, 2017, 362, 1.

Searching for orbits around the triple asteroid 2001SN263. Journal of Physics: Conference Series, 2017, 911, 012008.

XVIII Brazilian Colloquium on Orbital Dynamics (2016): the bases of Celestial Mechanics and its
65 development in the research institutions in Brazil. Journal of Physics: Conference Series, 2017, 911, 011001.

Injection of a microsatellite in circular orbits using a three-stage launch vehicle. Journal of Physics: Conference Series, 2017, $911,012012$.

Artificial satellites orbiting planetary satellites: critical inclination and sun-synchronous orbits. Journal of Physics: Conference Series, 2017, $911,012018$.
0.4

0

68 Traveling Between the Earth-Moon Lagrangian Points and the Earth. , 2016, , .
0

Developing the â€œPrecessing Inclined Bi-Elliptical Four-Body Problem with Radiation Pressureâ€oto
search for orbits in the triple asteroid 2001SN 263. Advances in Space Research, 2016, 57, 962-982.

Satellite de-orbiting via controlled solar radiation pressure. Celestial Mechanics and Dynamical Astronomy, 2016, 126, 433-459.

Close approach of a cloud of particles around an oblate planet. Computational and Applied
Mathematics, 2016, 35, 663-673.
1.3

Analysis of the orbital evolution of exoplanets. Computational and Applied Mathematics, 2016, 35,
847-863.

Exoplanets in binary star systems: on the switch from prograde to retrograde orbits. Celestial
Mechanics and Dynamical Astronomy, 2016, 124, 73-96.

Atmospheric close approaches with the Earth considering drag and lift forces. Computational and Applied Mathematics, 2016, 35, 817-833.

Searching for less perturbed elliptical orbits around Europa. Journal of Physics: Conference Series, 2015, 641, 012011.

Celestial Mechanics: from the bases of the past to the challenges of the future. Journal of Physics:
Conference Series, 2015, 641, 011001.

Close approach maneuvers around an oblate planet. Journal of Physics: Conference Series, 2015, 641,
012008.

Study of Some Strategies for Disposal of the GNSS Satellites. Mathematical Problems in Engineering,
2015, 2015, 1-14.

Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites 2014. Mathematical
Problems in Engineering, 2015, 2015, 1-3.

Mapping Orbits regarding Perturbations due to the Gravitational Field of a Cube. Mathematical Problems in Engineering, 2015, 2015, 1-11.

81 Propagation of Space Objects. Journal of Aerospace Technology and Management, 2015, 7, 5-6.

Estimating the trajectory of a space vehicle passing by the Moon using Kalman Filter. Journal of
Physics: Conference Series, 2015, 641, 012002.

Using Tethered Gravity-Assisted Maneuvers for Planetary Capture. Journal of Guidance, Control, and
Dynamics, 2015, 38, 1852-1856.

Out-of-plane orbital maneuvers using swing-bys with the Moon. Journal of Physics: Conference Series,
2015, 641, 012014.

A study of the errors of the averaged models in the restricted three-body problem in a short time
scale. Computational and Applied Mathematics, 2015, 34, 507-520.

Studying sequences of resonant orbits to perform successive close approaches with the Moon. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37, 1391-1404.

A numerical study of powered Swing-Bys around the Moon. Advances in Space Research, 2015, 56,
252-272.

Stable retrograde orbits around the triple system 2001 SN263. Monthly Notices of the Royal Astronomical Society, 2015, 449, 4404-4414.

Study of the gravitational capture of a spacecraft by Jupiter. Advances in Space Research, 2015, 55,
668-681.

Celestial mechanics: from the errant stars to guidance of spacecrafts. Computational and Applied
Mathematics, 2015, 34, 417-421.

Effects of the Eccentricity of a Perturbing Third Body on the Orbital Correction Maneuvers of a
 Spacecraft. Mathematical Problems in Engineering, 2014, 2014, 1-15.

1.1

Mapping orbits with low station keeping costs for constellations of satellites based on the integral over the time of the perturbing forces. Acta Astronautica, 2014, 104, 350-361.
$3.2 \quad 8$
99 On the effects of each term of the geopotential perturbation along the time I: Quasi-circular orbits.Advances in Space Research, 2014, 54, 1008-1018.
100 Minimum Fuel Low-Thrust Transfers for Satellites Using a Permanent Magnet Hall Thruster. Mathematical Problems in Engineering, 2013, 2013, 1-12.
$2.6 \quad 22$
$1.1 \quad 4$
101 Dynamics of Artificial Satellites around Europa. Mathematical Problems in Engineering, 2013, 2013, 1-7.
\qquad
Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites 2013. Mathematical Problems in Engineering, 2013, 2013, 1-5.
$1.1 \quad 9$

A Study of Single- and Double-Averaged Second-Order Models to Evaluate Third-Body Perturbation
103 Considering Elliptic Orbits for the Perturbing Body. Mathematical Problems in Engineering, 2013, 2013,
1.1

6 1-11.

104 Onboard and Real-Time Artificial Satellite Orbit Determination Using GPS. Mathematical Problems in
1.1

12
Engineering, 2013, 2013, 1-8.

Searching for Orbits with Minimum Fuel Consumption for Station-Keeping Maneuvers: An Application
105 Searching for Orbits with Minimum Fuel Consumption for Station-Keeping Maneuvers:
1.1

14

The Study of the Asymmetric Multiple Encounters Problem and Its Application to Obtain Jupiter Gravity
Assisted Maneuvers. Mathematical Problems in Engineering, 2013, 2013, 1-12.
1.1

3

107 Station Keeping of Constellations Using Multiobjective Strategies. Mathematical Problems in
Engineering, 2013, 2013, 1-15.
1.1

12
Trajectory control around non-spherical bodies modelled by parallelepipeds. Journal of Physics:
Conference Series, 2013, 465, 012008.A Study of Swing-By Trajectories in the Galilean Satellites of Jupiter. Journal of Physics: ConferenceSeries, 2013, 465, 012002.Powered Swing-By Maneuvers around the Moon. Journal of Physics: Conference Series, 2013, 465,012001.Rendezvous maneuvers using Cenetic Algorithm. Journal of Physics: Conference Series, 2013, 465,012005.
Searching sequences of resonant orbits between a spacecraft and Jupiter. Journal of Physics: $113 \quad \begin{aligned} & \text { Searching sequences of resonant orbits } \\ & \text { Conference Series, 2013, 465, 012011. }\end{aligned}$
0.4
A Study of the Duration of the Passage through the Van Allen Belts for a Spacecraft going to the Moon. Journal of Physics: Conference Series, 2013, 465, 012019.Studying the behaviour of averaged models in the third body perturbation problem. Journal of0.45
115 Physics: Conference Series, 2013, 465, 012017.2.113Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth. Scientific WorldJournal, The, 2013, 2013, 1-6.A Comparison of Averaged and Full Models to Study the Third-Body Perturbation. Scientific WorldJournal, The, 2013, 2013, 1-16.Low-Thrust Orbital Transfers in the Two-Body Problem. Mathematical Problems in Engineering, 2012,2012, 1-20.
Four-Impulsive Rendezvous Maneuvers for Spacecrafts in Circular Orbits Using Genetic Algorithms.
1.1 8
Mathematical Problems in Engineering, 2012, 2012, 1-16.
119Low-Thrust Out-of-Plane Orbital Station-Keeping Maneuvers for Satellites. Mathematical Problems in1.114
Engineering, 2012, 2012, 1-14. 120Comparison between Two Methods to Calculate the Transition Matrix of Orbit Motion. Mathematical121 Problems in Engineering, 2012, 2012, 1-12.
122 Orbital trajectories control around non-spherical bodies. , 2012, , .1
Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites. MathematicalProblems in Engineering, 2012, 2012, 1-7.1.10FROZEN ORBITS AROUND EUROPA. International Journal of Bifurcation and Chaos in Applied Sciences1.7and Engineering, 2012, 22, 1250240.
On one approach to the optimization of low-thrust station keeping manoeuvres. Advances in Space
125 Research, 2012, 50, 1478-1488.2.619Low-altitude, near-polar and near-circular orbits around Europa. Advances in Space Research, 2012, 49,994-1006.
Stability regions around the components of the triple system 2001 SN263. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3058-3073.

127 Royal Astronomical Society, 2012, 423, 3058-3073.

131 \begin{tabular}{l}
Some orbital characteristics of lunar artificial satellites. Celestial Mechanics and Dynamical

Astronomy, 2010, 108, 371-388.

132

Gravity-assisted maneuvers applied in the multi-objective optimization of interplanetary trajectories.

Acta Astronautica, 2010, 67, 1255-1271.
\end{tabular}

134 Collision and Stable Regions around Bodies with Simple Geometric Shape. Mathematical Problems inEngineering, 2009, 2009, 1-14.
Nonsphericity of the Moon and Near Sun-Synchronous Polar Lunar Orbits. Mathematical Problems in
135 Engineering, 2009, 2009, 1-24.
137 Space Dynamics. Mathematical Problems in Engineering, 2009, 2009, 1-7.1.1
139 Optimi
Sphere of influence and gravitational capture radius: a dynamical approach. Monthly Notices of the Royal Astronomical Society, 2008, 391, 675-684.

Third-Body Perturbation in the Case of Elliptic Orbits for the Disturbing Body. Mathematical Problems4.434

```
145 Third-Body Perturbation Using a Single Averaged Model: Application in Nonsingular Variables.
Mathematical Problems in Engineering, 2007, 2007, 1-14.
```

$1.1 \quad 7$

Orbital Maneuvers Using Low Thrust to Place a Satellite in a Constellation. Mathematical Problems in
1.1

Engineering, 2007, 2007, 1-9.

147 Numerical study of the time required for the gravitational capture in the bi-circular four-body
problem. Advances in Space Research, 2007, 40, 118-124.

A study of the effects of the forces in the ballistic capture by the major primary. Advances in Space
2.64

148 Research, 2007, 40, 96-101.

4
149 An analytical study of the powered swing-by to perform orbital maneuvers. Advances in Space Research, 2007, 40, 102-112.2.6
2.6

Optimization of transfers under constraints on the thrust direction: I. Cosmic Research, 2007, 45,
417-423.
9
A comparison of the â€œpatched-con
Space Research, 2007, 40, 113-117. 2.6 36A study of trajectories to the Neptune system using gravity assists. Advances in Space Research, 2007,40, 125-133.Study of the gravitational capture in the elliptical restricted three-body problem. Journal of theAstronautical Sciences, 2006, 54, 567-582.

```
163 Further Applications of the Smallest Loss Criterio.... , 2005, , .
Debris perturbed by radiation pressure: relative velocities across circular orbits. Advances in Space
Research, 2004,34, 1177-1180.

166 Trajectory selection for a spacecraft performing a two-dimensional swing-by. Advances in Space
Lambert problem solution in the hill model of motion. Celestial Mechanics and Dynamical Astronomy,1.419
168 Orbital maneuvers using gravitational capture times. Advances in Space Research, 2003, 31, 2005-2010. ..... 2.6 ..... 4
Single frequency GPS measureme
Astronautica, 2003, 53, 123-133. ..... 3.2 ..... 24
Third-Body Perturbation in Orbits Around Natural Satellites. Journal of Guidance, Control, and ..... 86
170 Dynamics, 2003, 26, 33-40. ..... 2.8 ..... 2.8
Numerical Study and Analytic Estimation of Forces Acting in Ballistic Gravitational Capture. Journal \(171 \begin{aligned} & \text { Numerical Study and Analytic Estimation of Forces Acting } \\ & \text { of Guidance, Control, and Dynamics, 2002, 25, 368-375. }\end{aligned}\) 2.8 ..... 14
2.6 ..... 4
172 Optimal space manoeuvres in a non-Keplerian force field. Advances in Space Research, 2002, 30, 345-350.
1.52
An Analytical and Numerical Study of Plane Change Maneuvers Using Aerodynamic Force. Journal ofthe Astronautical Sciences, 2002, 50, 289-303.
174 10.1007/s10604-008-1007-1. Time To Knit, 2000, 1, . ..... 0.1 ..... 1
175 Classification of Out-of-Plane Swing-By Trajectories. Journal of Guidance, Control, and Dynamics, 2.8 ..... 19
1999, 22, 643-649.2.823Time-of-Flight Analyses for the Gravitational Capture Maneuver. Journal of Guidance, Control, andDynamics, 1998, 21, 122-126.2.845Close-Approach Trajectories in the Elliptic Restricted Problem. Journal of Guidance, Control, andDynamics, 1997, 20, 797-802.
\(2.8 \quad 60\)
179 Traveling between the Lagrangian points and the Earth. Acta Astronautica, 1996, 39, 483-486.3.232

A manobra assistida por gravidade abrindo as portas para o sistema solar exterior. Revista Brasileira```

