## AntÃ'nio Fernando Bertachini De Almei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6207746/publications.pdf

Version: 2024-02-01



Antônio Fernando

| #  | Article                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Third-Body Perturbation in Orbits Around Natural Satellites. Journal of Guidance, Control, and Dynamics, 2003, 26, 33-40.                                            | 2.8 | 86        |
| 2  | Powered swingby. Journal of Guidance, Control, and Dynamics, 1996, 19, 1142-1147.                                                                                    | 2.8 | 60        |
| 3  | Third-Body Perturbation in the Case of Elliptic Orbits for the Disturbing Body. Mathematical Problems in Engineering, 2008, 2008, 1-14.                              | 1.1 | 51        |
| 4  | Close-Approach Trajectories in the Elliptic Restricted Problem. Journal of Guidance, Control, and Dynamics, 1997, 20, 797-802.                                       | 2.8 | 45        |
| 5  | Some orbital characteristics of lunar artificial satellites. Celestial Mechanics and Dynamical Astronomy, 2010, 108, 371-388.                                        | 1.4 | 43        |
| 6  | A comparison of the "patched-conics approach―and the restricted problem for swing-bys. Advances in<br>Space Research, 2007, 40, 113-117.                             | 2.6 | 36        |
| 7  | Exoplanets in binary star systems: on the switch from prograde to retrograde orbits. Celestial<br>Mechanics and Dynamical Astronomy, 2016, 124, 73-96.               | 1.4 | 35        |
| 8  | Sphere of influence and gravitational capture radius: a dynamical approach. Monthly Notices of the<br>Royal Astronomical Society, 2008, 391, 675-684.                | 4.4 | 34        |
| 9  | Traveling between the Lagrangian points and the Earth. Acta Astronautica, 1996, 39, 483-486.                                                                         | 3.2 | 32        |
| 10 | The dynamical environment of asteroid 21 Lutetia according to different internal models. Monthly<br>Notices of the Royal Astronomical Society, 2017, 464, 3552-3560. | 4.4 | 31        |
| 11 | Stability regions around the components of the triple system 2001 SN263. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3058-3073.                    | 4.4 | 30        |
| 12 | Mapping orbits around the asteroid 2001SN263. Advances in Space Research, 2014, 53, 877-889.                                                                         | 2.6 | 28        |
| 13 | Transfer orbits in restricted problem. Journal of Guidance, Control, and Dynamics, 1995, 18, 593-598.                                                                | 2.8 | 27        |
| 14 | Numerical and analytical study of the gravitational capture in the bicircular problem. Advances in<br>Space Research, 2005, 36, 578-584.                             | 2.6 | 27        |
| 15 | Low-altitude, near-polar and near-circular orbits around Europa. Advances in Space Research, 2012, 49,<br>994-1006.                                                  | 2.6 | 27        |
| 16 | Numerical study of the time required for the gravitational capture in the bi-circular four-body problem. Advances in Space Research, 2007, 40, 118-124.              | 2.6 | 25        |
| 17 | Single frequency GPS measurements in real-time artificial satellite orbit determination. Acta Astronautica, 2003, 53, 123-133.                                       | 3.2 | 24        |
| 18 | A numerical study of powered Swing-Bys around the Moon. Advances in Space Research, 2015, 56, 252-272.                                                               | 2.6 | 24        |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Transfer orbits in the Earth-moon system using a regularized model. Journal of Guidance, Control, and Dynamics, 1996, 19, 929-933.                                                                    | 2.8  | 23        |
| 20 | Time-of-Flight Analyses for the Gravitational Capture Maneuver. Journal of Guidance, Control, and Dynamics, 1998, 21, 122-126.                                                                        | 2.8  | 23        |
| 21 | Effects of the eccentricity of the primaries in powered Swing-By maneuvers. Advances in Space Research, 2017, 59, 2071-2087.                                                                          | 2.6  | 23        |
| 22 | Effects of atmospheric drag in swing-by trajectory. Acta Astronautica, 1995, 36, 285-290.                                                                                                             | 3.2  | 22        |
| 23 | On the effects of each term of the geopotential perturbation along the time I: Quasi-circular orbits.<br>Advances in Space Research, 2014, 54, 1008-1018.                                             | 2.6  | 22        |
| 24 | An analytical study of the powered swing-by to perform orbital maneuvers. Advances in Space<br>Research, 2007, 40, 102-112.                                                                           | 2.6  | 21        |
| 25 | Planetary Satellite Orbiters: Applications for the Moon. Mathematical Problems in Engineering, 2011, 2011, 1-19.                                                                                      | 1.1  | 21        |
| 26 | A numerical mapping of energy gains in a powered Swing-By maneuver. Nonlinear Dynamics, 2017, 89,<br>791-818.                                                                                         | 5.2  | 21        |
| 27 | Classification of Swing-By Trajectories Using the Moon. Applied Mechanics Reviews, 1995, 48, S138-S142.                                                                                               | 10.1 | 20        |
| 28 | Classification of Out-of-Plane Swing-By Trajectories. Journal of Guidance, Control, and Dynamics, 1999, 22, 643-649.                                                                                  | 2.8  | 19        |
| 29 | Lambert problem solution in the hill model of motion. Celestial Mechanics and Dynamical Astronomy, 2004, 90, 331-354.                                                                                 | 1.4  | 19        |
| 30 | On one approach to the optimization of low-thrust station keeping manoeuvres. Advances in Space<br>Research, 2012, 50, 1478-1488.                                                                     | 2.6  | 19        |
| 31 | Developing the "Precessing Inclined Bi-Elliptical Four-Body Problem with Radiation Pressure―to<br>search for orbits in the triple asteroid 2001SN 263. Advances in Space Research, 2016, 57, 962-982. | 2.6  | 16        |
| 32 | Numerical Study and Analytic Estimation of Forces Acting in Ballistic Gravitational Capture. Journal of Guidance, Control, and Dynamics, 2002, 25, 368-375.                                           | 2.8  | 14        |
| 33 | Study of the gravitational capture in the elliptical restricted three-body problem. Journal of the<br>Astronautical Sciences, 2006, 54, 567-582.                                                      | 1.5  | 14        |
| 34 | Low-Thrust Out-of-Plane Orbital Station-Keeping Maneuvers for Satellites. Mathematical Problems in<br>Engineering, 2012, 2012, 1-14.                                                                  | 1.1  | 14        |
| 35 | Searching for Orbits with Minimum Fuel Consumption for Station-Keeping Maneuvers: An Application to Lunisolar Perturbations. Mathematical Problems in Engineering, 2013, 2013, 1-11.                  | 1.1  | 14        |
| 36 | Stable retrograde orbits around the triple system 2001 SN263. Monthly Notices of the Royal Astronomical Society, 2015, 449, 4404-4414.                                                                | 4.4  | 14        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Studying the errors in the estimation of the variation of energy by the "patched-conics―model in the three-dimensional swing-by. Celestial Mechanics and Dynamical Astronomy, 2017, 129, 269-284. | 1.4 | 14        |
| 38 | Dynamics in the vicinity of (101955) Bennu: solar radiation pressure effects in equatorial orbits.<br>Monthly Notices of the Royal Astronomical Society, 2017, 470, 2687-2701.                    | 4.4 | 14        |
| 39 | Averaged model to study long-term dynamics of a probe about Mercury. Celestial Mechanics and Dynamical Astronomy, 2018, 130, 1.                                                                   | 1.4 | 14        |
| 40 | Nonsphericity of the Moon and Near Sun-Synchronous Polar Lunar Orbits. Mathematical Problems in Engineering, 2009, 2009, 1-24.                                                                    | 1.1 | 13        |
| 41 | Powered Swing-By Maneuvers around the Moon. Journal of Physics: Conference Series, 2013, 465, 012001.                                                                                             | 0.4 | 13        |
| 42 | Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth. Scientific World<br>Journal, The, 2013, 2013, 1-6.                                                            | 2.1 | 13        |
| 43 | Onboard and Real-Time Artificial Satellite Orbit Determination Using GPS. Mathematical Problems in Engineering, 2013, 2013, 1-8.                                                                  | 1.1 | 12        |
| 44 | Station Keeping of Constellations Using Multiobjective Strategies. Mathematical Problems in Engineering, 2013, 2013, 1-15.                                                                        | 1.1 | 12        |
| 45 | Analytical study of the swing-by maneuver in an elliptical system. Astrophysics and Space Science, 2018, 363, 1.                                                                                  | 1.4 | 12        |
| 46 | Lunar gravity assists using patched-conics approximation, three and four body problems. Advances in<br>Space Research, 2019, 64, 42-63.                                                           | 2.6 | 12        |
| 47 | FROZEN ORBITS AROUND EUROPA. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250240.                                                               | 1.7 | 11        |
| 48 | Transfer orbits to/from the Lagrangian points in the restricted four-body problem. Acta Astronautica, 2008, 63, 1221-1232.                                                                        | 3.2 | 10        |
| 49 | Optimization of transfers under constraints on the thrust direction: II. Cosmic Research, 2008, 46, 49-59.                                                                                        | 0.6 | 10        |
| 50 | Equilibrium points in the restricted synchronous three-body problem using a mass dipole model.<br>Astrophysics and Space Science, 2017, 362, 1.                                                   | 1.4 | 10        |
| 51 | Lifetime maps for orbits around Callisto using a double-averaged model. Astrophysics and Space Science, 2017, 362, 1.                                                                             | 1.4 | 10        |
| 52 | Trajectory selection for a spacecraft performing a two-dimensional swing-by. Advances in Space<br>Research, 2004, 34, 2256-2261.                                                                  | 2.6 | 9         |
| 53 | Optimization of transfers under constraints on the thrust direction: I. Cosmic Research, 2007, 45, 417-423.                                                                                       | 0.6 | 9         |
| 54 | Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites 2013. Mathematical<br>Problems in Engineering, 2013, 2013, 1-5.                                                  | 1.1 | 9         |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Study of the gravitational capture of a spacecraft by Jupiter. Advances in Space Research, 2015, 55, 668-681.                                                                                                     | 2.6 | 9         |
| 56 | Some characteristics of orbits for a spacecraft around Mercury. Computational and Applied Mathematics, 2018, 37, 267-281.                                                                                         | 1.3 | 9         |
| 57 | Suppression of Chaotic Motion of Tethered Satellite Systems Using Tether Length Control. Journal of<br>Guidance, Control, and Dynamics, 2022, 45, 580-586.                                                        | 2.8 | 9         |
| 58 | Gravity-assisted maneuvers applied in the multi-objective optimization of interplanetary trajectories.<br>Acta Astronautica, 2010, 67, 1255-1271.                                                                 | 3.2 | 8         |
| 59 | Four-Impulsive Rendezvous Maneuvers for Spacecrafts in Circular Orbits Using Genetic Algorithms.<br>Mathematical Problems in Engineering, 2012, 2012, 1-16.                                                       | 1.1 | 8         |
| 60 | Mapping orbits with low station keeping costs for constellations of satellites based on the integral over the time of the perturbing forces. Acta Astronautica, 2014, 104, 350-361.                               | 3.2 | 8         |
| 61 | Powered aero-gravity-assist maneuvers considering lift and drag around the Earth. Astrophysics and Space Science, 2017, 362, 1.                                                                                   | 1.4 | 8         |
| 62 | Searching for Less-Disturbed Orbital Regions Around the Near-Earth Asteroid 2001 SN263. Journal of Spacecraft and Rockets, 2019, 56, 1775-1785.                                                                   | 1.9 | 8         |
| 63 | Study of Henon's orbit transfer problem using the Lambert algorithm. Journal of Guidance, Control, and Dynamics, 1994, 17, 1075-1081.                                                                             | 2.8 | 7         |
| 64 | Third-Body Perturbation Using a Single Averaged Model: Application in Nonsingular Variables.<br>Mathematical Problems in Engineering, 2007, 2007, 1-14.                                                           | 1.1 | 7         |
| 65 | Comparison between Two Methods to Calculate the Transition Matrix of Orbit Motion. Mathematical<br>Problems in Engineering, 2012, 2012, 1-12.                                                                     | 1.1 | 7         |
| 66 | Dynamics of Artificial Satellites around Europa. Mathematical Problems in Engineering, 2013, 2013, 1-7.                                                                                                           | 1.1 | 7         |
| 67 | Using Tethered Gravity-Assisted Maneuvers for Planetary Capture. Journal of Guidance, Control, and Dynamics, 2015, 38, 1852-1856.                                                                                 | 2.8 | 7         |
| 68 | Analyzing "integral indices―to quantify the effects of a perturbing force in the harmonic and Duffing oscillators. Computational and Applied Mathematics, 2018, 37, 7-15.                                         | 1.3 | 7         |
| 69 | Dynamics of tethered asteroid systems to support planetary defense. European Physical Journal:<br>Special Topics, 2020, 229, 1463-1477.                                                                           | 2.6 | 7         |
| 70 | Analysis of the orbital evolution of space debris using a solar sail and natural forces. Advances in<br>Space Research, 2022, 70, 125-143.                                                                        | 2.6 | 7         |
| 71 | A study of trajectories to the Neptune system using gravity assists. Advances in Space Research, 2007, 40, 125-133.                                                                                               | 2.6 | 6         |
| 72 | A Study of Single- and Double-Averaged Second-Order Models to Evaluate Third-Body Perturbation<br>Considering Elliptic Orbits for the Perturbing Body. Mathematical Problems in Engineering, 2013, 2013,<br>1-11. | 1.1 | 6         |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Searching Less Perturbed Circular Orbits for a Spacecraft Travelling around Europa. Mathematical<br>Problems in Engineering, 2014, 2014, 1-10.                                                    | 1.1 | 6         |
| 74 | Effects of the Eccentricity of a Perturbing Third Body on the Orbital Correction Maneuvers of a Spacecraft. Mathematical Problems in Engineering, 2014, 2014, 1-15.                               | 1.1 | 6         |
| 75 | Study of Some Strategies for Disposal of the GNSS Satellites. Mathematical Problems in Engineering, 2015, 2015, 1-14.                                                                             | 1.1 | 6         |
| 76 | Satellite de-orbiting via controlled solar radiation pressure. Celestial Mechanics and Dynamical Astronomy, 2016, 126, 433-459.                                                                   | 1.4 | 6         |
| 77 | Analytical study of the powered Swing-By maneuver for elliptical systems and analysis of its efficiency. Astrophysics and Space Science, 2018, 363, 1.                                            | 1.4 | 6         |
| 78 | Orbital planar maneuvers using two and three-four (through infinity) impulses. Journal of Guidance,<br>Control, and Dynamics, 1996, 19, 274-282.                                                  | 2.8 | 5         |
| 79 | Debris perturbed by radiation pressure: relative velocities across circular orbits. Advances in Space<br>Research, 2004, 34, 1177-1180.                                                           | 2.6 | 5         |
| 80 | Studying the behaviour of averaged models in the third body perturbation problem. Journal of Physics: Conference Series, 2013, 465, 012017.                                                       | 0.4 | 5         |
| 81 | Mapping Orbits regarding Perturbations due to the Gravitational Field of a Cube. Mathematical<br>Problems in Engineering, 2015, 2015, 1-11.                                                       | 1.1 | 5         |
| 82 | A study of the errors of the averaged models in the restricted three-body problem in a short time scale. Computational and Applied Mathematics, 2015, 34, 507-520.                                | 1.3 | 5         |
| 83 | Studying sequences of resonant orbits to perform successive close approaches with the Moon.<br>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37, 1391-1404.      | 1.6 | 5         |
| 84 | Atmospheric close approaches with the Earth considering drag and lift forces. Computational and Applied Mathematics, 2016, 35, 817-833.                                                           | 1.3 | 5         |
| 85 | Analysis of impulsive maneuvers to keep orbits around the asteroid 2001SN263. Astrophysics and Space<br>Science, 2018, 363, 1.                                                                    | 1.4 | 5         |
| 86 | Generalizing the Bicircular Restricted Four-Body Problem. Journal of Guidance, Control, and Dynamics, 2020, 43, 1173-1179.                                                                        | 2.8 | 5         |
| 87 | Optimal trajectories towards near-earth-objects using solar electric propulsion (SEP) and gravity assisted maneuver. Journal of Aerospace Engineering, Sciences and Applications, 2008, 1, 51-64. | 0.3 | 5         |
| 88 | Mapping Long-Term Natural Orbits about Titania, a Satellite of Uranus. Symmetry, 2022, 14, 667.                                                                                                   | 2.2 | 5         |
| 89 | Optimal space manoeuvres in a non-Keplerian force field. Advances in Space Research, 2002, 30, 345-350.                                                                                           | 2.6 | 4         |
| 90 | Orbital maneuvers using gravitational capture times. Advances in Space Research, 2003, 31, 2005-2010.                                                                                             | 2.6 | 4         |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Planar close encounter trajectories for spacecrafts passing near Jupiter. Advances in Space Research, 2005, 36, 561-568.                                                            | 2.6 | 4         |
| 92  | Changing inclination of earth satellites using the gravity of the moon. Mathematical Problems in Engineering, 2006, 2006, 1-13.                                                     | 1.1 | 4         |
| 93  | A study of the effects of the forces in the ballistic capture by the major primary. Advances in Space<br>Research, 2007, 40, 96-101.                                                | 2.6 | 4         |
| 94  | Minimum Fuel Low-Thrust Transfers for Satellites Using a Permanent Magnet Hall Thruster.<br>Mathematical Problems in Engineering, 2013, 2013, 1-12.                                 | 1.1 | 4         |
| 95  | Analysis of the secular problem for triple star systems. Journal of Physics: Conference Series, 2013, 465, 012010.                                                                  | 0.4 | 4         |
| 96  | Searching for less perturbed elliptical orbits around Europa. Journal of Physics: Conference Series, 2015, 641, 012011.                                                             | 0.4 | 4         |
| 97  | Lifetime of a spacecraft around a synchronous system of asteroids using a dipole model. Astrophysics and Space Science, 2017, 362, 1.                                               | 1.4 | 4         |
| 98  | Perturbation Maps and the ring of Haumea. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2085-2097.                                                                  | 4.4 | 4         |
| 99  | Spacecraft motion around artificial equilibrium points. Nonlinear Dynamics, 2018, 91, 1473-1489.                                                                                    | 5.2 | 4         |
| 100 | Orbital control of a satellite using the gravity of the Moon. Journal of the Brazilian Society of<br>Mechanical Sciences and Engineering, 2006, 28, .                               | 1.6 | 4         |
| 101 | Optimal bi-impulsive non-coplanar maneuvers using hyperbolic orbital transfer with time constraint.<br>Journal of Aerospace Engineering, Sciences and Applications, 2008, 1, 43-50. | 0.3 | 4         |
| 102 | A Modification of the Method of Transporting Trajectory. Cosmic Research, 2004, 42, 103-108.                                                                                        | 0.6 | 3         |
| 103 | Optimization of low-thrust transfers in the three body problem. Cosmic Research, 2008, 46, 413-424.                                                                                 | 0.6 | 3         |
| 104 | Optimal low-thrust transfers between close near-circular coplanar orbits. Cosmic Research, 2011, 49, 269-279.                                                                       | 0.6 | 3         |
| 105 | The Study of the Asymmetric Multiple Encounters Problem and Its Application to Obtain Jupiter Gravity Assisted Maneuvers. Mathematical Problems in Engineering, 2013, 2013, 1-12.   | 1.1 | 3         |
| 106 | Mapping stable direct and retrograde orbits around the triple system of asteroids (45) Eugenia.<br>Monthly Notices of the Royal Astronomical Society, 2017, 472, 3999-4006.         | 4.4 | 3         |
| 107 | Planar powered Swing-By maneuvers to brake a spacecraft. Computational and Applied Mathematics, 2018, 37, 202-219.                                                                  | 1.3 | 3         |
| 108 | Application of Impulsive Aero-Gravity Assisted Maneuvers in Venus and Mars to Change the Orbital                                                                                    | 1.5 | 3         |

| #   | Article                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Use of the tethered swingby maneuver to reach the Haumea dwarf planet. Astrophysics and Space Science, 2019, 364, 1.                                                           | 1.4 | 3         |
| 110 | A mathematical study of the tethered slingshot maneuver using the elliptic restricted problem.<br>Nonlinear Dynamics, 2020, 102, 1585-1609.                                    | 5.2 | 3         |
| 111 | A historical review of the theory of gravity-assists in the pre-spaceflight era. Journal of the Brazilian<br>Society of Mechanical Sciences and Engineering, 2020, 42, 1.      | 1.6 | 3         |
| 112 | A SHORT HISTORY OF THE ACADEMIC ACTIVITIES AT THE BRAZILIAN NATIONAL INSTITUTE FOR SPACE RESEARCH. Journal of Aerospace Technology and Management, 2011, 3, 5-12.              | 0.3 | 3         |
| 113 | Comparisons between the circular restricted three-body and bi-circular four body problems for transfers between the two smaller primaries. Scientific Reports, 2022, 12, 4148. | 3.3 | 3         |
| 114 | Trajectories Derived from Periodic Orbits around the Lagrangian Point L1 and Lunar Swing-Bys:<br>Application in Transfers to Near-Earth Asteroids. Symmetry, 2022, 14, 1132.   | 2.2 | 3         |
| 115 | Outer Planet Missions with Electric Propulsion Systems—Part I. Mathematical Problems in<br>Engineering, 2010, 2010, 1-11.                                                      | 1.1 | 2         |
| 116 | Trajectory control around non-spherical bodies modelled by parallelepipeds. Journal of Physics:<br>Conference Series, 2013, 465, 012008.                                       | 0.4 | 2         |
| 117 | A Study of the Duration of the Passage through the Van Allen Belts for a Spacecraft going to the<br>Moon. Journal of Physics: Conference Series, 2013, 465, 012019.            | 0.4 | 2         |
| 118 | A Comparison of Averaged and Full Models to Study the Third-Body Perturbation. Scientific World<br>Journal, The, 2013, 2013, 1-16.                                             | 2.1 | 2         |
| 119 | Celestial Mechanics: from the bases of the past to the challenges of the future. Journal of Physics:<br>Conference Series, 2015, 641, 011001.                                  | 0.4 | 2         |
| 120 | Close approach of a cloud of particles around an oblate planet. Computational and Applied Mathematics, 2016, 35, 663-673.                                                      | 1.3 | 2         |
| 121 | Analysis of the orbital evolution of exoplanets. Computational and Applied Mathematics, 2016, 35, 847-863.                                                                     | 1.3 | 2         |
| 122 | Searching for some natural orbits to observe the double asteroid 2002CE26. Astrophysics and Space Science, 2017, 362, 1.                                                       | 1.4 | 2         |
| 123 | Studying the energy variation in the powered Swing-By in the Sun-Mercury system. Journal of Physics:<br>Conference Series, 2017, 911, 012007.                                  | 0.4 | 2         |
| 124 | Searching for orbits around the triple asteroid 2001SN263. Journal of Physics: Conference Series, 2017, 911, 012008.                                                           | 0.4 | 2         |
| 125 | Tetrahedron formation of nanosatellites with single-input control. Astrophysics and Space Science, 2018, 363, 1.                                                               | 1.4 | 2         |
| 126 | Analyzing "integral indices―to quantify the effects of a perturbing force over satellites. Acta<br>Astronautica, 2019, 164, 168-173.                                           | 3.2 | 2         |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A dynamical study of the Gefion asteroid family. Astronomy and Astrophysics, 2019, 622, A39.                                                                                                                  | 5.1 | 2         |
| 128 | Errors of Powered Swing-By in the Restricted Three-Body Problem. Journal of Guidance, Control, and Dynamics, 2019, 42, 2246-2257.                                                                             | 2.8 | 2         |
| 129 | Artificial equilibrium points and bi-impulsive maneuvers to observe 243 Ida. Chinese Journal of Aeronautics, 2021, 34, 410-423.                                                                               | 5.3 | 2         |
| 130 | The opportune location for a kinetic impactor to disrupt potentially hazardous asteroids. Planetary and Space Science, 2021, 206, 105305.                                                                     | 1.7 | 2         |
| 131 | An Analytical and Numerical Study of Plane Change Maneuvers Using Aerodynamic Force. Journal of the Astronautical Sciences, 2002, 50, 289-303.                                                                | 1.5 | 2         |
| 132 | Further Applications of the Smallest Loss Criterio , 2005, , .                                                                                                                                                |     | 2         |
| 133 | Swing-By Applications and Estimation of the Van Allen Belts' Radiation Exposure for a Spacecraft in a<br>Low Thrust Transfer to the Moon. Symmetry, 2022, 14, 617.                                            | 2.2 | 2         |
| 134 | Using low Lift-to-Drag spacecraft to perform upper atmospheric Aero-Gravity Assisted Maneuvers.<br>Advances in Space Research, 2022, 70, 1032-1047.                                                           | 2.6 | 2         |
| 135 | 10.1007/s10604-008-1007-1. Time To Knit, 2000, 1, .                                                                                                                                                           | 0.1 | 1         |
| 136 | Analysis of trajectories to neptune using gravity assists. Journal of the Astronautical Sciences, 2006, 54, 583-593.                                                                                          | 1.5 | 1         |
| 137 | Orbital Maneuvers Using Low Thrust to Place a Satellite in a Constellation. Mathematical Problems in Engineering, 2007, 2007, 1-9.                                                                            | 1.1 | 1         |
| 138 | Analysis of Electric Propulsion System for Exploration of Saturn. Mathematical Problems in Engineering, 2009, 2009, 1-14.                                                                                     | 1.1 | 1         |
| 139 | Orbital trajectories control around non-spherical bodies. , 2012, , .                                                                                                                                         |     | 1         |
| 140 | A Study of Swing-By Trajectories in the Galilean Satellites of Jupiter. Journal of Physics: Conference<br>Series, 2013, 465, 012002.                                                                          | 0.4 | 1         |
| 141 | Rendezvous maneuvers using Genetic Algorithm. Journal of Physics: Conference Series, 2013, 465, 012005.                                                                                                       | 0.4 | 1         |
| 142 | Searching for capture and escape trajectories around Jupiter using its Galilean satellites.<br>Computational and Applied Mathematics, 2015, 34, 451-460.                                                      | 1.3 | 1         |
| 143 | On the use of a variable coefficient of reflectivity associated with an augmented area-to-mass ratio to de-orbit CubeSats. Journal of Physics: Conference Series, 2017, 911, 012009.                          | 0.4 | 1         |
| 144 | XVIII Brazilian Colloquium on Orbital Dynamics (2016): the bases of Celestial Mechanics and its development in the research institutions in Brazil. Journal of Physics: Conference Series, 2017, 911, 011001. | 0.4 | 1         |

| #   | Article                                                                                                                                                               | IF        | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 145 | Determination of the optimal conditions for inclination maneuvers using a Swing-by. Astrophysics and Space Science, 2018, 363, 1.                                     | 1.4       | 1         |
| 146 | Celestial mechanics, spacecrafts, and 50th years of the first humans on the Moon. Computational and Applied Mathematics, 2018, 37, 1-6.                               | 1.3       | 1         |
| 147 | Building an "Escape Portal―with Tethers Fixed in Asteroids. Journal of the Astronautical Sciences, 2018, 65, 355-375.                                                 | 1.5       | 1         |
| 148 | Determination of thrusts to generate artificial equilibrium points in binary systems with applications to a planar solar sail. Nonlinear Dynamics, 2019, 95, 919-942. | 5.2       | 1         |
| 149 | On the use of a continuous thrust to find bounded planar trajectories at given altitudes in Low Earth<br>Orbits. Scientific Reports, 2020, 10, 8728.                  | 3.3       | 1         |
| 150 | Effects of Bank Angle During Powered Aerogravity-Assist Maneuver. Journal of Spacecraft and Rockets, 2021, 58, 486-498.                                               | 1.9       | 1         |
| 151 | Avaliação Acadêmica Multidimensional com o uso do "U-Multirank― Avaliação: Revista Da Avaliaçãc<br>Educação Superior, 2022, 27, 159-182.                              | Da<br>0.2 | 1         |
| 152 | A study of the dispersion of a cloud of particles due to a close approach. Advances in Space Research, 2005, 36, 585-589.                                             | 2.6       | 0         |
| 153 | On the scattering of comets by a planet. Advances in Space Research, 2006, 37, 169-173.                                                                               | 2.6       | 0         |
| 154 | Gravitational Capture by the Major Primary in the Restricted Four-Body Problem. , 2006, , .                                                                           |           | 0         |
| 155 | Collision and Stable Regions around Bodies with Simple Geometric Shape. Mathematical Problems in Engineering, 2009, 2009, 1-14.                                       | 1.1       | 0         |
| 156 | Space Dynamics. Mathematical Problems in Engineering, 2009, 2009, 1-7.                                                                                                | 1.1       | 0         |
| 157 | Low-Thrust Orbital Transfers in the Two-Body Problem. Mathematical Problems in Engineering, 2012, 2012, 1-20.                                                         | 1.1       | 0         |
| 158 | Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites. Mathematical<br>Problems in Engineering, 2012, 2012, 1-7.                           | 1.1       | 0         |
| 159 | Searching sequences of resonant orbits between a spacecraft and Jupiter. Journal of Physics:<br>Conference Series, 2013, 465, 012011.                                 | 0.4       | 0         |
| 160 | A Stronger than ever Journal on Space Sciences, Technology, Management and Applications. Journal of<br>Aerospace Technology and Management, 2014, 6, 5-6.             | 0.3       | 0         |
| 161 | Mathematics of Nanosatellites. Journal of Aerospace Technology and Management, 2014, 6, 361-362.                                                                      | 0.3       | 0         |
| 162 | Gravitational Capture and Maintenance of a Spacecraft Around Pluto. , 2014, , .                                                                                       |           | 0         |

| #   | Article                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Close approach maneuvers around an oblate planet. Journal of Physics: Conference Series, 2015, 641, 012008.                                                                | 0.4 | 0         |
| 164 | Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites 2014. Mathematical<br>Problems in Engineering, 2015, 2015, 1-3.                           | 1.1 | 0         |
| 165 | Propagation of Space Objects. Journal of Aerospace Technology and Management, 2015, 7, 5-6.                                                                                | 0.3 | 0         |
| 166 | Estimating the trajectory of a space vehicle passing by the Moon using Kalman Filter. Journal of Physics: Conference Series, 2015, 641, 012002.                            | 0.4 | 0         |
| 167 | Out-of-plane orbital maneuvers using swing-bys with the Moon. Journal of Physics: Conference Series, 2015, 641, 012014.                                                    | 0.4 | 0         |
| 168 | Celestial mechanics: from the errant stars to guidance of spacecrafts. Computational and Applied Mathematics, 2015, 34, 417-421.                                           | 1.3 | 0         |
| 169 | Traveling Between the Earth-Moon Lagrangian Points and the Earth. , 2016, , .                                                                                              |     | 0         |
| 170 | Applications of celestial mechanics in natural objects and spacecrafts. Computational and Applied Mathematics, 2017, 36, 1463-1469.                                        | 1.3 | 0         |
| 171 | Searching for orbits around the triple system 45 Eugenia. Journal of Physics: Conference Series, 2017, 911, 012001.                                                        | 0.4 | 0         |
| 172 | Equilibrium points in the asteroid 2001SN263. Journal of Physics: Conference Series, 2017, 911, 012023.                                                                    | 0.4 | 0         |
| 173 | Injection of a microsatellite in circular orbits using a three-stage launch vehicle. Journal of Physics:<br>Conference Series, 2017, 911, 012012.                          | 0.4 | 0         |
| 174 | Artificial satellites orbiting planetary satellites: critical inclination and sun-synchronous orbits.<br>Journal of Physics: Conference Series, 2017, 911, 012018.         | 0.4 | 0         |
| 175 | Co-Orbital Orbits Around the Asteroid 65803 Didymos (1996 GT). , 2018, , .                                                                                                 |     | 0         |
| 176 | Strategies to Find Orbits around the Triple Asteroid 2001 <sub>263</sub> . , 2018, , .                                                                                     |     | 0         |
| 177 | Searching for orbits to observe the poles of celestial bodies. Advances in Space Research, 2020, 66, 2378-2401.                                                            | 2.6 | 0         |
| 178 | Celestial Mechanics in the XXIst century – challenges. European Physical Journal: Special Topics, 2020,<br>229, 1373-1377.                                                 | 2.6 | 0         |
| 179 | A manobra assistida por gravidade abrindo as portas para o sistema solar exterior. Revista Brasileira<br>De Ensino De Fisica, 0, 43, .                                     | 0.2 | 0         |
| 180 | A computational approach to the powered Swing-By in the elliptic restricted problem. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1. | 1.6 | 0         |

| #   | Article                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | The use of consecutive collision orbits to obtain , 2005, , .                                                                                         |     | 0         |
| 182 | SEARCH FOR STABLE ORBITS AROUND THE BINARY ASTEROID SYSTEMS 1999 KW4 AND DIDYMOS. Revista<br>Mexicana De Astronomia Y Astrofisica, 2020, 56, 113-128. | 0.5 | 0         |
| 183 | Autonomous and Robust Orbit-Keeping for Small-Body Missions. Journal of Guidance, Control, and Dynamics, 2022, 45, 587-598.                           | 2.8 | 0         |
| 184 | Circular Restricted n-Body Problem. Journal of Guidance, Control, and Dynamics, 0, , 1-8.                                                             | 2.8 | 0         |
| 185 | PERFIL DOS GESTORES DO PROGRAMA DE INTERNACIONALIZAÇÃO (CAPES-PrInt). Revista Estudos E<br>Pesquisas Em Administração, 2021, 5, .                     | 0.0 | 0         |
| 186 | Applying the perturbative integral in aeromaneuvers around Mars to calculate the cost. Scientific Reports, 2022, 12, 5022.                            | 3.3 | 0         |
| 187 | Dynamics of a Particle in 3:1 Tesseral Resonance with the Dwarf Planet Haumea. Symmetry, 2022, 14, 1378.                                              | 2.2 | Ο         |