AntÃ'nio Fernando Bertachini De Almei

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6207746/publications.pdf
Version: 2024-02-01

Third-Body Perturbation in Orbits Around Natural Satellites. Journal of Guidance, Control, and 2.8 86
Dynamics, 2003, 26, 33-40.2 Powered swingby. Journal of Guidance, Control, and Dynamics, 1996, 19, 1142-1147.2.860
Third-Body Perturbation in the Case of Elliptic Orbits for the Disturbing Body. Mathematical Problemsin Engineering, 2008, 2008, 1-14.Close-Approach Trajectories in the Elliptic Restricted Problem. Journal of Guidance, Control, andDynamics, 1997, 20, 797-802.
Some orbital characteristics of lunar artificial satellites. Celestial Mechanics and Dynamical 1.4 43
$5 \quad$ Astronomy, 2010, 108, 371-388.A comparison of the â€œpatched-conics approachâ€•and the restricted problem for swing-bys. Advances in2.6
Space Research, 2007, 40, 113-117.7 Exoplanets in binary star systems: on the switch from prograde to retrograde orbits. Celestial
Mechanics and Dynamical Astronomy, 2016, 124, 73-96.
1.4 35Sphere of influence and gravitational capture radius: a dynamical approach. Monthly Notices of theRoyal Astronomical Society, 2008, 391, 675-684.$4.4 \quad 34$9 Traveling between the Lagrangian points and the Earth. Acta Astronautica, 1996, 39, 483-486.3.232
10 The dynamical environment of asteroid 21 Lutetia according to different internal models. MonthlyNotices of the Royal Astronomical Society, 2017, 464, 3552-3560.
4.4 31
11 Stability regions around the components of the triple system 2001 SN263. Monthly Notices of the
11 Royal Astronomical Society, 2012, 423, 3058-3073.
4.4 30
12 Mapping orbits around the asteroid 2001SN263. Advances in Space Research, 2014, 53, 877-889. 2.6 28
13 Transfer orbits in restricted problem. Journal of Guidance, Control, and Dynamics, 1995, 18, 593-598. 2.8 27Numerical and analytical study of the gravitational capture in the bicircular problem. Advances inSpace Research, 2005, 36, 578-584.
Low-altitude, near-polar and near-circular orbits around Europa. Advances in Space Research, 2012, 49, 994-1006.Numerical study of the time required for the gravitational capture in the bi-circular four-bodyproblem. Advances in Space Research, 2007, 40, 118-124.

```
19 Transfer orbits in the Earth-moon system using a regularized model. Journal of Guidance, Control,
and Dynamics, 1996, 19, 929-933.
```

2.8

Time-of-Flight Analyses for the Gravitational Capture Maneuver. Journal of Guidance, Control, and Dynamics, 1998, 21, 122-126.

23	On the effects of each term of the geopotential perturbation along the time l: Quasi-circular orbits. Advances in Space Research, 2014, 54, 1008-1018.	2.6	22
24	An analytical study of the powered swing-by to perform orbital maneuvers. Advances in Space Research, 2007, 40, 102-112.	2.6	21
25	Planetary Satellite Orbiters: Applications for the Moon. Mathematical Problems in Engineering, 2011, 2011, 1-19.	1.1	21
26	A numerical mapping of energy gains in a powered Swing-By maneuver. Nonlinear Dynamics, 2017, 89, 791-818.	5.2	21
27	Classification of Swing-By Trajectories Using the Moon. Applied Mechanics Reviews, 1995, 48, S138-S142.	10.1	20
28	Classification of Out-of-Plane Swing-By Trajectories. Journal of Guidance, Control, and Dynamics, 1999, 22, 643-649.	2.8	19

29 Lambert problem solution in the hill model of motion. Celestial Mechanics and Dynamical Astronomy, 2004, 90, 331-354.
19
$30 \quad \begin{aligned} & \text { On one approach to the optimiza } \\ & \text { Research, 2012, 50, 1478-1488. }\end{aligned}$2.619
2.6 16
Developing the â€œPrecessing Inclined Bi-Elliptical Four-Body Problem with Radiation Pressureâ€oto
search for orbits in the triple asteroid 2001SN 263. Advances in Space Research, 2016, 57, 962-982. 31Numerical Study and Analytic Estimation of Forces Acting in Ballistic Gravitational Capture. Journal2.814of Guidance, Control, and Dynamics, 2002, 25, 368-375.Study of the gravitational capture in the elliptical restricted three-body problem. Journal of the1.51414
Astronautical Sciences, 2006, 54, 567-582. 33Low-Thrust Out-of-Plane Orbital Station-Keeping Maneuvers for Satellites. Mathematical Problems in1.114

Dynamics in the vicinity of (101955) Bennu: solar radiation pressure effects in equatorial orbits.
Onboard and Real-Time Artificial Satellite Orbit Determination Using GPS. Mathematical Problems in
Engineering, 2013, 2013, 1-8.
44 Station Keeping of Constellations Using Multiobjective Strategies. Mathematical Problems inEngineering, 2013, 2013, 1-15.

45

FROZEN ORBITS AROUND EUROPA. International Journal of Bifurcation and Chaos in Applied Sciences
and Engineering, 2012, 22, 1250240.
Analytical study of the swing-by maneuver in an elliptical system. Astrophysics and Space Science, 2018,
Analytical study of the swing-by maneuver in an elliptical system. Astrophysics and Space Science, 2018,
Analytical study of the swing-by maneuver in an elliptical system. Astrophysics and Space Science, 2018,
363, 1.
363, 1.
363, 1.
Lunar gravity assists using patched-conics approximation, three and four body problems. Advances in
Lunar gravity assists using patched-conics approximation, three and four body problems. Advances in
Lunar gravity assists using patched-conics approximation, three and four body problems. Advances in Space Research, 2019, 64, 42-63. Space Research, 2019, 64, 42-63. Space Research, 2019, 64, 42-63.
FROZEN ORBITS AROUND EUROPA. In
and Engineering, 2012, 22, 1250240.
FROZEN ORBITS AROUND EUROPA. In
and Engineering, 2012, 22, 1250240.
FROZEN ORBITS AROUND EUROPA. In
and Engineering, 2012, 22, 1250240.$1.1 \quad 12$
$1.4 \quad 12$Transfer orbits to/from the Lagrangian points in the restricted four-body problem. Acta Astronautica,3.210
2008, 63, 1221-1232.
0.6 10
Optimization of transfers under constraints on the thrust direction: II. Cosmic Research, 2008, 46, $49 \quad$ Optim1.410Equilibrium points in the restricted synchronous three-body problem using a mass dipole model.Astrophysics and Space Science, 2017, 362, 1.
Lifetime maps for orbits around Callisto using a double-averaged model. Astrophysics and Space 1.4 10
$51 \quad$ Science, 2017, 362, 1.Trajectory selection for a spacecraft performing a two-dimensional swing-by. Advances in SpaceResearch, 2004, 34, 2256-2261.
Optimization of transfers under constraints on the thrust direction: I. Cosmic Research, 2007, 45,
417-423.$0.6 \quad 9$

```
55 Study of the gravitational capture of a spacecraft by Jupiter. Advances in Space Research, 2015, 55,
668-681.
```

Some characteristics of orbits for a spacecraft around Mercury. Computational and Applied
56 Mathematics, 2018, 37, 267-281.
1.3

9
3

57 Suppression of Chaotic Motion of Tethered Satellite Systems Using Tether Length Control. Journal of Guidance, Control, and Dynamics, 2022, 45, 580-586.
2.8

9

Gravity-assisted maneuvers applied in the multi-objective optimization of interplanetary trajectories.
Acta Astronautica, 2010, 67, 1255-1271.
3.2

8

59 Four-Impulsive Rendezvous Maneuvers for Spacecrafts in Circular Orbits Using Genetic Algorithms.
Mathematical Problems in Engineering, 2012, 2012, 1-16.
1.18

60 Mapping orbits with low station keeping costs for constellations of satellites based on the integral
over the time of the perturbing forces. Acta Astronautica, 2014, 104, 350-361.
3.2

Powered aero-gravity-assist maneuvers considering lift and drag around the Earth. Astrophysics and
Space Science, 2017, 362, 1.
1.48

Searching for Less-Disturbed Orbital Regions Around the Near-Earth Asteroid 2001 SN263. Journal of Spacecraft and Rockets, 2019, 56, 1775-1785.
1.98

> 63 Study of Henon's orbit transfer problem using the Lambert algorithm. Journal of Guidance, Control,
> and Dynamics, 1994, 17, 1075-1081.
> 64 Third-Body Perturbation Using a Single Averaged Model: Application in Nonsingular Variables.
> Mathematical Problems in Engineering, 2007, 2007, 1-14.
> 65 Comparison between Two Methods to Calculate the Transition Matrix of Orbit Motion. Mathematical
> Problems in Engineering, 2012, 2012, 1-12.
1.1

7
$1.1 \quad 7$

66 Dynamics of Artificial Satellites around Europa. Mathematical Problems in Engineering, 2013, 2013, 1-7.
1.1

7

```
67 Using Tethered Gravity-Assisted Maneuvers for Planetary Capture. Journal of Guidance, Control, and
Dynamics, 2015, 38, 1852-1856.
```

Analyzing â€œintegral indicesâ€•to quantify the effects of a perturbing force in the harmonic and Duffing
1.3 oscillators. Computational and Applied Mathematics, 2018, 37, 7-15.

Dynamics of tethered asteroid systems to support planetary defense. European Physical Journal:
Special Topics, 2020, 229, 1463-1477.

Analysis of the orbital evolution of space debris using a solar sail and natural forces. Advances in Space Research, 2022, 70, 125-143.
Searching Less Perturbed Circular Orbits for a Spacecraft Travelling around Europa. Mathematical
Problems in Engineering, 2014, 2014, 1-10.

Effects of the Eccentricity of a Perturbing Third Body on the Orbital Correction Maneuvers of a Spacecraft. Mathematical Problems in Engineering, 2014, 2014, 1-15.
1.1

6
1.16

75 Study of Some Strategies for Disposal of the GNSS Satellites. Mathematical Problems in Engineering, 2015, 2015, 1-14.

6

76 Satellite de-orbiting via controlled solar radiation pressure. Celestial Mechanics and Dynamical
1.4

6
Astronomy, 2016, 126, 433-459.

$77 \quad$| Analytical study of the powered Swing-By maneuver for elliptical systems and analysis of its |
| :--- |
| efficiency. Astrophysics and Space Science, 2018, 363, 1. |

1.4
efficiency. Astrophysics and Space Science, 2018, 363, 1.

Orbital planar maneuvers using two and three-four (through infinity) impulses. Journal of Guidance,

79 Debris perturbed by radiation pressure: relative velocities across circular orbits. Advances in Space
Research, 2004, 34, 1177-1180.

Studying the behaviour of averaged models in the third body perturbation problem. Journal of
80 Physics: Conference Series, 2013, 465, 012017.
$0.4 \quad 5$

Mapping Orbits regarding Perturbations due to the Gravitational Field of a Cube. Mathematical
Mapping Orbits regarding Perturbations due
Problems in Engineering, 2015, 2015, 1-11.
1.1

5

82 A study of the errors of the averaged models in the restricted three-body problem in a short time scale. Computational and Applied Mathematics, 2015, 34, 507-520.
1.3

5
83 Studying sequences of resonant orbits to perform successive close approaches with the Moon.

Atmospheric close approaches with the Earth considering drag and lift forces. Computational and Applied Mathematics, 2016, 35, 817-833.
1.3
1.6

5

Analysis of impulsive maneuvers to keep orbits around the asteroid 2001SN263. Astrophysics and Space
$85 \quad$ Science, 2018, 363, 1.

Generalizing the Bicircular Restricted Four-Body Problem. Journal of Guidance, Control, and
Dynamics, 2020, 43, 1173-1179.
2.8

5
Planar close encounter trajectories for spacecrafts passing near Jupiter. Advances in Space Research,
$2005,36,561-568$.

92 Changing inclination of earth satellites using the gravity of the moon. Mathematical Problems in
$1.1 \quad 4$
Engineering, 2006, 2006, 1-13.
93 A study of the effects of the forces in the ballistic capture by the major primary. Advances in Space
Research, 2007, 40, 96-101.
Minimum Fuel Low-Thrust Transfers for Satellites Using a Permanent Magnet Hall Thruster.
Mathematical Problems in Engineering, 2013, 2013, 1-12.
1.14
95 Analysis of the secular problem for triple star systems. Journal of Physics: Conference Series, 2013,
465,012010 .

96 Searching for less perturbed elliptical orbits around Europa. Journal of Physics: Conference Series, $0.4 \quad 4$
97 Lifetime of a spacecraft around a synchronous system of asteroids using a dipole model. Astrophysics and Space Science, 2017, 362, 1. $1.4 \quad 4$
Perturbation Maps and the ring of Haumea. Monthly Notices of the Royal Astronomical Society, 2020,496, 2085-2097.$4.4 \quad 4$
99 Spacecraft motion around artificial equilibrium points. Nonlinear Dynamics, 2018, 91, 1473-1489. 5.2Orbital control of a satellite using the gravity of the Moon. Journal of the Brazilian Society ofMechanical Sciences and Engineering, 2006, 28, .
$1.6 \quad 4$
101 Optimal bi-impulsive non-coplanar maneuvers using hyperbolic orbital transfer with time constraint.
Journal of Aerospace Engineering, Sciences and Applications, 2008, 1, 43-50. 4
102 A Modification of the Method of Transporting Trajectory. Cosmic Research, 2004, 42, 103-108.0.63
103 Optimization of low-thrust transfers in the three body problem. Cosmic Research, 2008, 46, 413-424. 0.6 3
104 Optimal low-thrust transfers between close near-circular coplanar orbits. Cosmic Research, 2011, 49,0.63
269-279.
$1.1 \quad 3$
105 The Study of the Asymmetric Multiple Encounters Problem and Its Application to Obtain Jupiter Gravity Assisted Maneuvers. Mathematical Problems in Engineering, 2013, 2013, 1-12. 3
106 Mapping stable direct and retrograde orbits around the triple system of asteroids (45) Eugenia. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3999-4006.

Use of the tethered swingby maneuver to reach the Haumea dwarf planet. Astrophysics and Space
Science, 2019, 364, 1.

A mathematical study of the tethered slingshot maneuver using the elliptic restricted problem. Nonlinear Dynamics, 2020, 102, 1585-1609.

A historical review of the theory of gravity-assists in the pre-spaceflight era. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.

A SHORT HISTORY OF THE ACADEMIC ACTIVITIES AT THE BRAZILIAN NATIONAL INSTITUTE FOR SPACE RESEARCH. Journal of Aerospace Technology and Management, 2011, 3, 5-12.
0.3 Comparisons between the circular restricted three-body and bi-circular four body problems for transfers between the two smaller primaries. Scientific Reports, 2022, 12, 4148.

Trajectories Derived from Periodic Orbits around the Lagrangian Point L1 and Lunar Swing-Bys: Application in Transfers to Near-Earth Asteroids. Symmetry, 2022, 14, 1132.

Outer Planet Missions with Electric Propulsion Systemsâ€"Part I. Mathematical Problems in Engineering, 2010, 2010, 1-11.

Trajectory control around non-spherical bodies modelled by parallelepipeds. Journal of Physics: Conference Series, 2013, 465, 012008.

A Study of the Duration of the Passage through the Van Allen Belts for a Spacecraft going to the Moon. Journal of Physics: Conference Series, 2013, 465, 012019.

A Comparison of Averaged and Full Models to Study the Third-Body Perturbation. Scientific World Journal, The, 2013, 2013, 1-16.

> Celestial Mechanics: from the bases of the past to the challenges of the future. Journal of Physics:

Conference Series, 2015, 641, 011001.

Close approach of a cloud of particles around an oblate planet. Computational and Applied Mathematics, 2016, 35, 663-673.

Analysis of the orbital evolution of exoplanets. Computational and Applied Mathematics, 2016, 35, 847-863.

Searching for some natural orbits to observe the double asteroid 2002CE26. Astrophysics and Space Science, 2017, 362, 1.

Studying the energy variation in the powered Swing-By in the Sun-Mercury system. Journal of Physics:
Conference Series, 2017, 911, 012007.

Searching for orbits around the triple asteroid 2001SN263. Journal of Physics: Conference Series, 2017,
911, 012008.

Tetrahedron formation of nanosatellites with single-input control. Astrophysics and Space Science, 2018, 363, 1.
1.4

Analyzing â€œintegral indicesâ $€$ •to quantify the effects of a perturbing force over satellites. Acta
Astronautica, 2019, 164, 168-173.
127 A dynamical study of the Gefion asteroid family. Astronomy and Astrophysics, 2019, 622, A39. $5.1 \quad 2$
Errors of Powered Swing-By in the Restricted Three-Body Problem. Journal of Guidance, Control, and Dynamics, 2019, 42, 2246-2257.
2.8
2

129 Artificial equilibrium points and bi-impulsive maneuvers to observe 243 Ida. Chinese Journal of Aeronautics, 2021, 34, 410-423.

The opportune location for a kinetic impactor to disrupt potentially hazardous asteroids. Planetary and Space Science, 2021, 206, 105305.
1.7

2

```
131 An Analytical and Numerical Study of Plane Change Maneuvers Using Aerodynamic Force. Journal of the Astronautical Sciences, 2002, 50, 289-303.
```

1.5

132 Further Applications of the Smallest Loss Criterio.... , 2005, , .
2

133 Swing-By Applications and Estimation of the Van Allen Beltsâ€ ${ }^{\mathrm{TM}}$ Radiation Exposure for a Spacecraft in a
Low Thrust Transfer to the Moon. Symmetry, 2022, 14, 617.
$2.2 \quad 2$

134 Using low Lift-to-Drag spacecraft to perform upper atmospheric Aero-Gravity Assisted Maneuvers.
Advances in Space Research, 2022, 70, 1032-1047.

135 10.1007/s10604-008-1007-1. Time To Knit, 2000, 1, .
0.1

Analysis of trajectories to neptune using gravity assists. Journal of the Astronautical Sciences, 2006, 54, 583-593.

> 137 Orbital Maneuvers Using Low Thrust to Place a Satellite in a Constellation. Mathematical Problems in Engineering, 2007, 2007, 1-9.
$1.1 \quad 1$

Analysis of Electric Propulsion System for Exploration of Saturn. Mathematical Problems in
Engineering, 2009, 2009, 1-14.
1.1

1

139 Orbital trajectories control around non-spherical bodies. , 2012, , .

140 A Study of Swing-By Trajectories in the Galilean Satellites of Jupiter. Journal of Physics: Conference
$0.4 \quad 1$ Series, 2013, 465, 012002.
$0.4 \quad 1$
141 Rendezvous maneuvers using Genetic Algorithm. Journal of Physics: Conference Series, 2013, 465, 012005.

Searching for capture and escape trajectories around Jupiter using its Galilean satellites.

145	Determination of the optimal conditions for inclination maneuvers using a Swing-by. Astrophysics and Space Science, 2018, 363, 1.	1.4	1
146	Celestial mechanics, spacecrafts, and 50th years of the first humans on the Moon. Computational and Applied Mathematics, 2018, 37, 1-6.	1.3	1
147	Building an â€œEscape Portalâ€owith Tethers Fixed in Asteroids. Journal of the Astronautical Sciences, 2018, 65, 355-375.	1.5	1
148	Determination of thrusts to generate artificial equilibrium points in binary systems with applications to a planar solar sail. Nonlinear Dynamics, 2019, 95, 919-942.	5.2	1
149	On the use of a continuous thrust to find bounded planar trajectories at given altitudes in Low Earth Orbits. Scientific Reports, 2020, 10, 8728.	3.3	1
150	Effects of Bank Angle During Powered Aerogravity-Assist Maneuver. Journal of Spacecraft and Rockets, 2021, 58, 486-498.	1.9	1
151	AvaliaÃ§Ã£o AcadÃamica Multidimensional com o uso do â€œU-Multirankâ€: AvaliaÃ§Ã£o: Revista Da EducaÃ§Ã£o Superior, 2022, 27, 159-182.		1
152	A study of the dispersion of a cloud of particles due to a close approach. Advances in Space Research, 2005, 36, 585-589.	2.6	0
153	On the scattering of comets by a planet. Advances in Space Research, 2006, 37, 169-173.	2.6	0

154 Gravitational Capture by the Major Primary in the Restricted Four-Body Problem. , 2006, , .
Collision and Stable Regions around Bodies with Simple Geometric Shape. Mathematical Problems in
Engineering, 2009, 2009, 1-14.
1.1 0
156 Space Dynamics. Mathematical Problems in Engineering, 2009, 2009, 1-7. 1.1 0
157 Low-Thrust Orbital Transfers in the Two-Body Problem. Mathematical Problems in Engineering, 2012, 1.1 0
Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites. Mathematical1.10
159 Searching sequences of resonant orbits between a spacecraft and Jupiter. Journal of Physics:
Conference Series, 2013, 465, 012011.0.40A Stronger than ever Journal on Space Sciences, Technology, Management and Applications. Journal ofAerospace Technology and Management, 2014, 6, 5-6.

```
163 Close approach maneuvers around an oblate planet. Journal of Physics: Conference Series, 2015, 641,
012008.

Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites 2014. Mathematical Problems in Engineering, 2015, 2015, 1-3.
\(1.1 \quad 0\)
Out-of-plane orbital maneuvers using swing-bys with the Moon. Journal of Physics: Conference Series,
\(2015,641,012014\).

168 Celestial mechanics: from the errant stars to guidance of spacecrafts. Computational and Applied
1.3

0
Mathematics, 2015, 34, 417-421.
0
\(\square\)169 Traveling Between the Earth-Moon Lagrangian Points and the Earth. , 2016, , .

Applications of celestial mechanics in natural objects and spacecrafts. Computational and Applied
1.3

0

Mathematics, 2017, 36, 1463-1469.

170

Searching for orbits around the triple system 45 Eugenia. Journal of Physics: Conference Series, 2017,
911, 012001.
173 Injection of a microsatellite in circular orbits using a three-stage launch vehicle. Journal of Physics:0.40
Conference Series, 2017, \(911,012012\).
Artificial satellites orbiting planetary satellites: critical inclination and sun-synchronous orbits.
174 Journal of Physics: Conference Series, 2017, 911, 012018.
0.4
0

175 Co-Orbital Orbits Around the Asteroid 65803 Didymos (1996 GT). , 2018, , .
0

176 Strategies to Find Orbits around the Triple Asteroid 2001<sub>263</sub>. , 2018, , .
0

> 177 Searching for orbits to observe the poles of celestial bodies. Advances in Space Research, 2020, 66,
> \(2378-2401\).
2.6

0

Celestial Mechanics in the XXIst century â€" challenges. European Physical Journal: Special Topics, 2020,
229, 1373-1377.

\footnotetext{
A manobra assistida por gravidade abrindo as portas para o sistema solar exterior. Revista Brasileira
De Ensino De Fisica, 0, 43, .
}
0.2```

