Prashant Nagpal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6207710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasmooth Patterned Metals for Plasmonics and Metamaterials. Science, 2009, 325, 594-597.	6.0	770
2	Engineering metallic nanostructures for plasmonics and nanophotonics. Reports on Progress in Physics, 2012, 75, 036501.	8.1	427
3	Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films. Nature Communications, 2011, 2, 486.	5.8	236
4	Photoexcited quantum dots for killing multidrug-resistant bacteria. Nature Materials, 2016, 15, 529-534.	13.3	231
5	Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing. ACS Nano, 2011, 5, 6244-6253.	7.3	203
6	Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals. Nano Letters, 2014, 14, 101-106.	4.5	194
7	Three-Dimensional Plasmonic Nanofocusing. Nano Letters, 2010, 10, 1369-1373.	4.5	167
8	Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals. Nano Letters, 2008, 8, 3238-3243.	4.5	126
9	Singleâ€Crystalline Silver Films for Plasmonics. Advanced Materials, 2012, 24, 3988-3992.	11.1	118
10	Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation. Science Advances, 2017, 3, e1701776.	4.7	107
11	Nanorg Microbial Factories: Light-Driven Renewable Biochemical Synthesis Using Quantum Dot-Bacteria Nanobiohybrids. Journal of the American Chemical Society, 2019, 141, 10272-10282.	6.6	99
12	Spectral Dependence of Nanocrystal Photoionization Probability: The Role of Hot-Carrier Transfer. ACS Nano, 2011, 5, 5045-5055.	7.3	74
13	Measurement of Electronic States of PbS Nanocrystal Quantum Dots Using Scanning Tunneling Spectroscopy: The Role of Parity Selection Rules in Optical Absorption. Physical Review Letters, 2013, 110, 127406.	2.9	68
14	Observation of Thermal Beaming from Tungsten and Molybdenum Bull's Eyes. ACS Photonics, 2016, 3, 494-500.	3.2	63
15	Photocatalysis Deconstructed: Design of a New Selective Catalyst for Artificial Photosynthesis. Nano Letters, 2014, 14, 597-603.	4.5	62
16	Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing. Nano Letters, 2016, 16, 7849-7856.	4.5	54
17	Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals. Journal of Materials Chemistry, 2011, 21, 10836.	6.7	49
18	Thermally Stable Organic–Inorganic Hybrid Photoresists for Fabrication of Photonic Band Gap Structures with Direct Laser Writing, Advanced Materials, 2008, 20, 606-610	11.1	46

PRASHANT NAGPAL

#	Article	IF	CITATIONS
19	Copper plasmonics and catalysis: role of electron–phonon interactions in dephasing localized surface plasmons. Nanoscale, 2014, 6, 12450-12457.	2.8	46
20	Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture. Scientific Reports, 2013, 3, 1857.	1.6	43
21	Photon upconversion towards applications in energy conversion and bioimaging. Progress in Surface Science, 2017, 92, 281-316.	3.8	41
22	Doping of wide-bandgap titanium-dioxide nanotubes: optical, electronic and magnetic properties. Nanoscale, 2014, 6, 10839-10849.	2.8	33
23	Fabrication of Smooth Patterned Structures of Refractory Metals, Semiconductors, and Oxides via Template Stripping. ACS Applied Materials & Interfaces, 2013, 5, 9701-9708.	4.0	27
24	Quantum dot therapeutics: a new class of radical therapies. Journal of Biological Engineering, 2019, 13, 48.	2.0	27
25	Assessing Different Reactive Oxygen Species as Potential Antibiotics: Selectivity of Intracellular Superoxide Generation Using Quantum Dots. ACS Applied Bio Materials, 2018, 1, 529-537.	2.3	26
26	Improved dielectric functions in metallic films obtained via template stripping. Applied Physics Letters, 2012, 100, 081105.	1.5	25
27	Designing Superoxide-Generating Quantum Dots for Selective Light-Activated Nanotherapy. Frontiers in Chemistry, 2018, 6, 46.	1.8	25
28	Nearâ€Infraredâ€Lightâ€Triggered Antimicrobial Indium Phosphide Quantum Dots. Angewandte Chemie - International Edition, 2019, 58, 11414-11418.	7.2	21
29	Standalone anion- and co-doped titanium dioxide nanotubes for photocatalytic and photoelectrochemical solar-to-fuel conversion. Nanoscale, 2016, 8, 17496-17505.	2.8	20
30	Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification. ACS Nano, 2017, 11, 11169-11181.	7.3	18
31	Multiple Energy Exciton Shelves in Quantum-Dot–DNA Nanobioelectronics. Journal of Physical Chemistry Letters, 2014, 5, 3909-3913.	2.1	15
32	Gold nanoclusters cause selective light-driven biochemical catalysis in living nano-biohybrid organisms. Nanoscale Advances, 2020, 2, 2363-2370.	2.2	15
33	Reversing radiation-induced immunosuppression using a new therapeutic modality. Life Sciences in Space Research, 2022, 35, 127-139.	1.2	15
34	Photoexcited Quantum Dots as Efficacious and Nontoxic Antibiotics in an Animal Model. ACS Biomaterials Science and Engineering, 2021, 7, 1863-1875.	2.6	14
35	Direct conjugation of DNA to quantum dots for scalable assembly of photoactive thin films. RSC Advances, 2014, 4, 8064.	1.7	13
36	Highâ€Throughput Block Optical DNA Sequence Identification. Small, 2018, 14, 1703165.	5.2	13

PRASHANT NAGPAL

#	Article	IF	CITATIONS
37	Effect of plasmon-enhancement on photophysics in upconverting nanoparticles. Optics Express, 2014, 22, 11516.	1.7	12
38	Pseudo-direct bandgap transitions in silicon nanocrystals: effects on optoelectronics and thermoelectrics. Nanoscale, 2014, 6, 14643-14647.	2.8	12
39	Conformational Smear Characterization and Binning of Single-Molecule Conductance Measurements for Enhanced Molecular Recognition. Journal of the American Chemical Society, 2017, 139, 15420-15428.	6.6	12
40	ROS mediated selection for increased NADPH availability in Escherichia coli. Biotechnology and Bioengineering, 2017, 114, 2685-2689.	1.7	12
41	Nucleotide and structural label identification in single RNA molecules with quantum tunneling spectroscopy. Chemical Science, 2019, 10, 1052-1063.	3.7	12
42	Transparent conducting oxide nanotubes. Nanotechnology, 2014, 25, 385202.	1.3	11
43	Low Exciton–Phonon Coupling, High Charge Carrier Mobilities, and Multiexciton Properties in Two-Dimensional Lead, Silver, Cadmium, and Copper Chalcogenide Nanostructures. Journal of Physical Chemistry Letters, 2014, 5, 4291-4297.	2.1	10
44	Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants. Physical Chemistry Chemical Physics, 2017, 19, 10042-10050.	1.3	10
45	BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage. Computers in Biology and Medicine, 2019, 110, 196-206.	3.9	9
46	Photoactivated Indium Phosphide Quantum Dots Treat Multidrug-Resistant Bacterial Abscesses <i>In Vivo</i> . ACS Applied Materials & Interfaces, 2021, 13, 30404-30419.	4.0	8
47	Measurements of Single Nucleotide Electronic States as Nanoelectronic Fingerprints for Identification of DNA Nucleobases, Their Protonated and Unprotonated States, Isomers, and Tautomers. Journal of Physical Chemistry B, 2015, 119, 4968-4974.	1.2	7
48	Long-range energy transfer in self-assembled quantum dot-DNA cascades. Nanoscale, 2015, 7, 18435-18440.	2.8	7
49	Single Nucleobase Identification Using Biophysical Signatures from Nanoelectronic Quantum Tunneling. Small, 2017, 13, 1603033.	5.2	7
50	Isolating the <i>Escherichia coli</i> Transcriptomic Response to Superoxide Generation from Cadmium Chalcogenide Quantum Dots. ACS Biomaterials Science and Engineering, 2019, 5, 4206-4218.	2.6	7
51	Photophysical Color Tuning for Photon Upconverting Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 27011-27016.	4.0	7
52	Tuning Ternary Zn1–xCdxTe Quantum Dot Composition: Engineering Electronic States for Light-Activated Superoxide Generation as a Therapeutic against Multidrug-Resistant Bacteria. ACS Biomaterials Science and Engineering, 2019, 5, 3111-3118.	2.6	7
53	Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films. Applied Physics Letters, 2015, 106, 083109.	1.5	6
54	Diagnostic Optical Sequencing. ACS Applied Materials & amp; Interfaces, 2019, 11, 35587-35596.	4.0	6

PRASHANT NAGPAL

#	Article	IF	CITATIONS
55	Titanium-dioxide nanotube p-n homojunction diode. Applied Physics Letters, 2014, 105, 263501.	1.5	5
56	Air-Pressure Tunable Depletion Width, Rectification Behavior, and Charge Conduction in Oxide Nanotubes. ACS Applied Materials & amp; Interfaces, 2015, 7, 2153-2159.	4.0	5
57	Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO ₂ semiconductor nanotubes. Nanotechnology, 2015, 26, 295203.	1.3	5
58	Nearâ€Infraredâ€Lightâ€Triggered Antimicrobial Indium Phosphide Quantum Dots. Angewandte Chemie, 2019, 131, 11536-11540.	1.6	5
59	Analysis of Identification Method for Bacterial Species and Antibiotic Resistance Genes Using Optical Data From DNA Oligomers. Frontiers in Microbiology, 2020, 11, 257.	1.5	5
60	Light-activated quantum dot potentiation of antibiotics to treat drug-resistant bacterial biofilms. Nanoscale Advances, 2021, 3, 2782-2786.	2.2	4
61	Co-doping metal oxide nanotubes: superlinear photoresponse and multianalyte sensing. Materials Research Express, 2019, 6, 1150b1.	0.8	2