Ronald Feitosa Pinheiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6207150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteins of the mitotic checkpoint and spindle are related to chromosomal instability and unfavourable prognosis in patients with myelodysplastic syndrome. Journal of Clinical Pathology, 2015, 68, 381-387.	2.0	16
2	Proteins related to the spindle and checkpoint mitotic emphasize the different pathogenesis of hypoplastic MDS. Leukemia Research, 2014, 38, 218-224.	0.8	14
3	Polymorphisms of DNA repair genes are related to the pathogenesis of myelodysplastic syndrome. Hematological Oncology, 2015, 33, 220-228.	1.7	14
4	HFE gene mutation and oxidative damage biomarkers in patients with myelodysplastic syndromes and its relation to transfusional iron overload: an observational cross-sectional study. BMJ Open, 2015, 5, e006048-e006048.	1.9	14
5	Prognostic importance of Aurora Kinases and mitotic spindle genes transcript levels in Myelodysplastic syndrome. Leukemia Research, 2018, 64, 61-70.	0.8	14
6	The ambiguous role of interferon regulatory factor-1 (IRF-1) immunoexpression in myelodysplastic syndrome. Leukemia Research, 2009, 33, 1308-1312.	0.8	13
7	ATM polymorphism is associated with low risk myelodysplastic syndrome. DNA Repair, 2013, 12, 87-89.	2.8	13
8	Influence of functional polymorphisms in DNA repair genes of myelodysplastic syndrome. Leukemia Research, 2016, 48, 62-72.	0.8	13
9	Chromosomal abnormalities and dysregulated DNA repair gene expression in farmers exposed to pesticides. Environmental Toxicology and Pharmacology, 2021, 82, 103564.	4.0	12
10	New polymorphisms of Xeroderma Pigmentosum DNA repair genes in myelodysplastic syndrome. Leukemia Research, 2017, 58, 73-82.	0.8	10
11	ERVs-TLR3-IRF axis is linked to myelodysplastic syndrome pathogenesis. Medical Oncology, 2021, 38, 27.	2.5	7
12	CRISPR/Cas9 small promoter deletion in H19 lncRNA is associated with altered cell morphology and proliferation. Scientific Reports, 2021, 11, 18380.	3.3	7
13	Expression of <scp>DNA</scp> repair genes is important molecular findings in <scp>CD</scp> 34Â+Â stem cells of myelodysplastic syndrome. European Journal of Haematology, 2018, 100, 108-109.	2.2	5
14	Tissue methylation and demethylation influence translesion synthesis DNA polymerases (TLS) contributing to the genesis of chromosomal abnormalities in myelodysplastic syndrome. Journal of Clinical Pathology, 2022, 75, 85-93.	2.0	5
15	Myelodysplastic syndromes: An analysis of non-hematological prognostic factors and its relationship to age. Journal of Geriatric Oncology, 2020, 11, 125-127.	1.0	4
16	Dysregulation of interferon regulatory genes reinforces the concept of chronic immune response in myelodysplastic syndrome pathogenesis. Hematological Oncology, 2019, 37, 523-526.	1.7	3
17	Primary cardiac lymphoblastic B-cell lymphoma: Should we treat more intensively?. Journal of Cancer Research and Therapeutics, 2015, 11, 1034.	0.9	2
18	It is not just the number of metaphases that matters. Leukemia Research, 2018, 68, 70-71.	0.8	1

#	ARTICLE	IF	CITATIONS
19	Can synthetic lethality approach be used with DNA repair genes for primary and secondary MDS?. Medical Oncology, 2019, 36, 99.	2.5	1
20	Myelodysplastic Syndrome Over Time. Mayo Clinic Proceedings, 2019, 94, 2593-2594.	3.0	1
21	c.9253-6T > c REV3L: A novel marker of poor prognosis in Myelodysplastic syndrome. Hematology, Transfusion and Cell Therapy, 2020, 43, 377-381.	0.2	1
22	Functional polymorphisms of DNA repair genes in Latin America reinforces the heterogeneity of Myelodysplastic Syndrome. Hematology, Transfusion and Cell Therapy, 2021, , .	0.2	1
23	K lotho Expression Predicts Poor Prognosis in Myelodysplastic Syndrome. Blood, 2019, 134, 5404-5404.	1.4	1
24	Do small increases in serum ferritin impact prognosis in lower-risk MDS patients?. International Journal of Hematology, 2020, 111, 742-744.	1.6	0
25	Plasma IL-33 levels are decreased in patients with high-risk myelodysplastic syndrome and show no correlation with pro-inflammatory IL-6 levels. Cytokine, 2021, 148, 155617.	3.2	0
26	Anaplastic large cell lymphoma: a call for disease awareness. Hematology, Transfusion and Cell Therapy, 2021, , .	0.2	0
27	Chromosomal Abnormalities in MDS Are Linked to Dysregulation of CDC20 and CEP55 Genes. Blood, 2020, 136, 36-37.	1.4	0