Ludovica Ciuffreda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6206944/publications.pdf

Version: 2024-02-01

40 papers 2,342 citations

279701 23 h-index 36 g-index

40 all docs

40 docs citations

40 times ranked

4403 citing authors

#	Article	IF	CITATIONS
1	KEAP1 and TP53 Frame Genomic, Evolutionary, and Immunologic Subtypes of Lung Adenocarcinoma With Different Sensitivity to Immunotherapy. Journal of Thoracic Oncology, 2021, 16, 2065-2077.	0.5	28
2	KEAP1-driven co-mutations in lung adenocarcinoma unresponsive to immunotherapy despite high tumor mutational burden. Annals of Oncology, 2020, 31, 1746-1754.	0.6	140
3	Tumor Microenvironment: Implications in Melanoma Resistance to Targeted Therapy and Immunotherapy. Cancers, 2020, 12, 2870.	1.7	64
4	AXL Receptor in Breast Cancer: Molecular Involvement and Therapeutic Limitations. International Journal of Molecular Sciences, 2020, 21, 8419.	1.8	14
5	Efficacy of immunotherapy in lung cancer with co-occurring mutations in NOTCH and homologous repair genes., 2020, 8, e000946.		13
6	PTEN Function at the Interface between Cancer and Tumor Microenvironment: Implications for Response to Immunotherapy. International Journal of Molecular Sciences, 2020, 21, 5337.	1.8	26
7	BRAF status modulates Interelukin-8 expression through a CHOP-dependent mechanism in colorectal cancer. Communications Biology, 2020, 3, 546.	2.0	8
8	From Genetic Alterations to Tumor Microenvironment: The Ariadne's String in Pancreatic Cancer. Cells, 2020, 9, 309.	1.8	23
9	Translational Landscape of mTOR Signaling in Integrating Cues Between Cancer and Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1223, 69-80.	0.8	5
10	PTEN in Lung Cancer: Dealing with the Problem, Building on New Knowledge and Turning the Game Around. Cancers, 2019, 11, 1141.	1.7	71
11	Mutations in the KEAP1-NFE2L2 Pathway Define a Molecular Subset of Rapidly Progressing Lung Adenocarcinoma. Journal of Thoracic Oncology, 2019, 14, 1924-1934.	0.5	60
12	Advances in Tumor-Stroma Interactions: Emerging Role of Cytokine Network in Colorectal and Pancreatic Cancer. Journal of Oncology, 2019, 2019, 1-12.	0.6	20
13	PTEN as a Prognostic/Predictive Biomarker in Cancer: An Unfulfilled Promise?. Cancers, 2019, 11, 435.	1.7	86
14	Colorectal cancer stem cells properties and features: evidence of interleukin-8 involvement., 2019, 2, 968-979.		2
15	mTOR Cross-Talk in Cancer and Potential for Combination Therapy. Cancers, 2018, 10, 23.	1.7	108
16	Therapeutic potential of combined BRAF/MEK blockade in BRAF-wild type preclinical tumor models. Journal of Experimental and Clinical Cancer Research, 2018, 37, 140.	3. 5	27
17	Role of mTOR Signaling in Tumor Microenvironment: An Overview. International Journal of Molecular Sciences, 2018, 19, 2453.	1.8	109
18	PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Scientific Reports, 2017, 7, 43013.	1.6	44

#	Article	IF	CITATIONS
19	Metformin-induced ablation of microRNA 21-5p releases Sestrin-1 and CAB39L antitumoral activities. Cell Discovery, 2017, 3, 17022.	3.1	59
20	Lack of growth inhibitory synergism with combined MAPK/PI3K inhibition in preclinical models of pancreatic cancer. Annals of Oncology, 2017, 28, 2896-2898.	0.6	13
21	PTEN: Multiple Functions in Human Malignant Tumors. Frontiers in Oncology, 2015, 5, 24.	1.3	356
22	An overview of angiogenesis inhibitors in Phase II studies for non-small-cell lung cancer. Expert Opinion on Investigational Drugs, 2015, 24, 1143-1161.	1.9	6
23	PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting. Advances in Biological Regulation, 2014, 56, 66-80.	1.4	77
24	Anti-Angiogenic Drugs and Biomarkers in Non-Small-Cell Lung Cancer: A †Hard Days Night'. Current Pharmaceutical Design, 2014, 20, 3958-3972.	0.9	17
25	Signaling Intermediates (MAPK and PI3K) as Therapeutic Targets in NSCLC. Current Pharmaceutical Design, 2014, 20, 3944-3957.	0.9	55
26	Advances towards the design and development of personalized non-small-cell lung cancer drug therapy. Expert Opinion on Drug Discovery, 2013, 8, 1381-1397.	2.5	6
27	PROFILing non-small-cell lung cancer patients for treatment with crizotinib according to anaplastic lymphoma kinase abnormalities: translating science into medicine. Expert Opinion on Pharmacotherapy, 2013, 14, 597-608.	0.9	6
28	Therapeutic potential of MEK inhibition in acute myelogenous leukemia: rationale for "vertical―and "lateral―combination strategies. Journal of Molecular Medicine, 2012, 90, 1133-1144.	1.7	35
29	The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms. Journal of Molecular Medicine, 2012, 90, 667-679.	1.7	54
30	Emerging pathways and future targets for the molecular therapy of pancreatic cancer. Expert Opinion on Therapeutic Targets, 2011, 15, 1183-1196.	1.5	48
31	The mTOR Pathway: A New Target in Cancer Therapy. Current Cancer Drug Targets, 2010, 10, 484-495.	0.8	152
32	Signal Transduction Pathways as Therapeutic Targets in Cancer Therapy. , 2010, , 37-83.		2
33	Growth-Inhibitory and Antiangiogenic Activity of the MEK Inhibitor PD0325901 in Malignant Melanoma with or without BRAF Mutations. Neoplasia, 2009, 11, 720-W6.	2.3	87
34	Signaling Intermediates (PI3K/PTEN/AKT/mTOR and RAF/MEK/ERK Pathways) as Therapeutic Targets for Anti-Cancer and Anti-Angiogenesis Treatments. Current Signal Transduction Therapy, 2009, 4, 130-143.	0.3	11
35	Overcoming resistance to molecularly targeted anticancer therapies: Rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies. Drug Resistance Updates, 2007, 10, 81-100.	6.5	74
36	Comparative Gene Profiling of Acute Myeloid Leukemia (AML) and Malignant Melanoma (MEL) Cell Lines Exposed to the MEK Inhibitor PD0325901 Reveals Common Effectors of the MEK/ERK Kinase Module Blood, 2007, 110, 3470-3470.	0.6	1

#	Article	IF	CITATION
37	Antiangiogenic Potential of the Mammalian Target of Rapamycin Inhibitor Temsirolimus. Cancer Research, 2006, 66, 5549-5554.	0.4	314
38	Bcl-2 overexpression in melanoma cells increases tumor progression-associated properties and in vivo tumor growth. Journal of Cellular Physiology, 2005, 205, 414-421.	2.0	69
39	Trastuzumab Down-Regulates Bcl-2 Expression and Potentiates Apoptosis Induction by Bcl-2/Bcl-XL Bispecific Antisense Oligonucleotides in HER-2Gene–Amplified Breast Cancer Cells. Clinical Cancer Research, 2004, 10, 7747-7756.	3.2	50
40	Fibroblast-Induced Paradoxical PI3K Pathway Activation in PTEN-Competent Colorectal Cancer: Implications for Therapeutic PI3K/mTOR Inhibition. Frontiers in Oncology, 0, 12, .	1.3	2