David J Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6206886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of ground vibration from trains using the wavenumber finite and boundary element methods. Journal of Sound and Vibration, 2006, 293, 575-586.	3.9	241
2	A theoretical model for ground vibration from trains generated by vertical track irregularities. Journal of Sound and Vibration, 2004, 272, 937-965.	3.9	208
3	EXPERIMENTAL VALIDATION OF THE TWINS PREDICTION PROGRAM FOR ROLLING NOISE, PART 1: DESCRIPTION OF THE MODEL AND METHOD. Journal of Sound and Vibration, 1996, 193, 123-135.	3.9	207
4	A REVIEW OF THE MODELLING OF WHEEL/RAIL NOISE GENERATION. Journal of Sound and Vibration, 2000, 231, 519-536.	3.9	185
5	A comparison of a theoretical model for quasi-statically and dynamically induced environmental vibration from trains with measurements. Journal of Sound and Vibration, 2003, 267, 621-635.	3.9	169
6	The quantification of structure-borne transmission paths by inverse methods. Part 1: Improved singular value rejection methods. Journal of Sound and Vibration, 2003, 264, 411-431.	3.9	148
7	Wheel-rail Noise Generation, Part III: Rail Vibration. Journal of Sound and Vibration, 1993, 161, 421-446.	3.9	140
8	A theoretical study on the influence of the track on train-induced ground vibration. Journal of Sound and Vibration, 2004, 272, 909-936.	3.9	139
9	A HYBRID MODEL FOR THE NOISE GENERATION DUE TO RAILWAY WHEEL FLATS. Journal of Sound and Vibration, 2002, 251, 115-139.	3.9	134
10	Wheel-rail Noise Generation, Part I: Introduction And Interaction Model. Journal of Sound and Vibration, 1993, 161, 387-400.	3.9	127
11	EXPERIMENTAL VALIDATION OF THE TWINS PREDICTION PROGRAM FOR ROLLING NOISE, PART 2: RESULTS. Journal of Sound and Vibration, 1996, 193, 137-147.	3.9	124
12	The quantification of structure-borne transmission paths by inverse methods. Part 2: Use of regularization techniques. Journal of Sound and Vibration, 2003, 264, 433-451.	3.9	117
13	Modelling ground vibration from railways using wavenumber finite- and boundary-element methods. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461, 2043-2070.	2.1	115
14	Comparison of methods for parameter selection in Tikhonov regularization with application to inverse force determination. Journal of Sound and Vibration, 2007, 304, 894-917.	3.9	106
15	Responses of infinite periodic structures to moving or stationary harmonic loads. Journal of Sound and Vibration, 2005, 282, 125-149.	3.9	104
16	Recent developments in the prediction and control of aerodynamic noise from high-speed trains. International Journal of Rail Transportation, 2015, 3, 119-150.	2.7	102
17	Modelling, simulation and evaluation of ground vibration caused by rail vehicles. Vehicle System Dynamics, 2019, 57, 936-983.	3.7	100
18	A tuned damping device for reducing noise from railway track. Applied Acoustics, 2007, 68, 43-57.	3.3	92

2

#	Article	IF	CITATIONS
19	Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator. Mechanical Systems and Signal Processing, 2016, 66-67, 785-792.	8.0	92
20	DYNAMIC STIFFNESS FORMULATION, FREE VIBRATION AND WAVE MOTION OF HELICAL SPRINGS. Journal of Sound and Vibration, 2001, 239, 297-320.	3.9	90
21	The radiation efficiency of baffled plates and strips. Journal of Sound and Vibration, 2005, 280, 181-209.	3.9	88
22	VIBRATION ANALYSIS OF RAILWAY TRACK WITH MULTIPLE WHEELS ON THE RAIL. Journal of Sound and Vibration, 2001, 239, 69-97.	3.9	87
23	A waveguide finite element and boundary element approach to calculating the sound radiated by railway and tram rails. Journal of Sound and Vibration, 2009, 321, 813-836.	3.9	85
24	Reducing railway-induced ground-borne vibration by using open trenches and soft-filled barriers. Soil Dynamics and Earthquake Engineering, 2016, 88, 45-59.	3.8	84
25	DEVELOPMENTS OF THE INDIRECT METHOD FOR MEASURING THE HIGH FREQUENCY DYNAMIC STIFFNESS OF RESILIENT ELEMENTS. Journal of Sound and Vibration, 1998, 213, 169-188.	3.9	81
26	Identification, modelling and reduction potential of railway noise sources: a critical survey. Journal of Sound and Vibration, 2003, 267, 447-468.	3.9	77
27	A DOUBLE TIMOSHENKO BEAM MODEL FOR VERTICAL VIBRATION ANALYSIS OF RAILWAY TRACK AT HIGH FREQUENCIES. Journal of Sound and Vibration, 1999, 224, 329-348.	3.9	76
28	On the impact noise generation due to a wheel passing over rail joints. Journal of Sound and Vibration, 2003, 267, 485-496.	3.9	76
29	The dynamic behaviour of rail fasteners at high frequencies. Applied Acoustics, 1997, 52, 1-17.	3.3	75
30	A continuous damped vibration absorber to reduce broad-band wave propagation in beams. Journal of Sound and Vibration, 2008, 311, 824-842.	3.9	74
31	Track Dynamic Behaviour at High Frequencies. Part 1: Theoretical Models and Laboratory Measurements. Vehicle System Dynamics, 1995, 24, 86-99.	3.7	70
32	ON THE RELATIONSHIP BETWEEN WHEEL AND RAIL SURFACE ROUGHNESS AND ROLLING NOISE. Journal of Sound and Vibration, 1996, 193, 149-160.	3.9	70
33	Wheel-rail Noise Generation, Part II: Wheel Vibration. Journal of Sound and Vibration, 1993, 161, 401-419.	3.9	69
34	The use of decay rates to analyse the performance of railway track in rolling noise generation. Journal of Sound and Vibration, 2006, 293, 485-495.	3.9	69
35	Theoretical Investigation of Wheel/Rail Non-Linear Interaction due to Roughness Excitation. Vehicle System Dynamics, 2000, 34, 261-282.	3.7	68
36	On the parametric excitation of the wheel/track system. Journal of Sound and Vibration, 2004, 278, 725-747.	3.9	66

#	Article	IF	CITATIONS
37	A 2.5D finite element and boundary element model for the ground vibration from trains in tunnels and validation using measurement data. Journal of Sound and Vibration, 2018, 422, 373-389.	3.9	66
38	Using the Fourier-series approach to study interactions between moving wheels and a periodically supported rail. Journal of Sound and Vibration, 2007, 303, 873-894.	3.9	64
39	Evaluating railway track support stiffness from trackside measurements in the absence of wheel load data. Canadian Geotechnical Journal, 2016, 53, 1156-1166.	2.8	62
40	ROLLING NOISE GENERATED BY RAILWAY WHEELS WITH VISCO-ELASTIC LAYERS. Journal of Sound and Vibration, 2000, 231, 779-790.	3.9	61
41	THEORETICAL OPTIMIZATION OF TRACK COMPONENTS TO REDUCE ROLLING NOISE. Journal of Sound and Vibration, 1996, 193, 161-171.	3.9	60
42	The effect of boundary conditions, model size and damping models in the finite element modelling of a moving load on a track/ground system. Soil Dynamics and Earthquake Engineering, 2016, 89, 12-27.	3.8	60
43	The influence of soil nonlinear properties on the track/ground vibration induced by trains running on soft ground. Transportation Geotechnics, 2017, 11, 1-16.	4.5	58
44	Selection of response measurement locations to improve inverse force determination. Applied Acoustics, 2006, 67, 797-818.	3.3	57
45	Wheel-rail Noise Generation, Part V: Inclusion Of Wheel Rotation. Journal of Sound and Vibration, 1993, 161, 467-482.	3.9	55
46	Mitigation of railway-induced vibration by using subgrade stiffening. Soil Dynamics and Earthquake Engineering, 2015, 79, 89-103.	3.8	55
47	Properties of train load frequencies and their applications. Journal of Sound and Vibration, 2017, 397, 123-140.	3.9	55
48	Investigations of propagating wave types in railway tracks at high frequencies. Journal of Sound and Vibration, 2008, 315, 157-175.	3.9	54
49	Mode count and modal density of structural systems: relationships with boundary conditions. Journal of Sound and Vibration, 2004, 274, 621-651.	3.9	53
50	Mitigation of railway induced ground vibration by heavy masses next to the track. Soil Dynamics and Earthquake Engineering, 2015, 75, 158-170.	3.8	52
51	THE USE OF AN EQUIVALENT FORCES METHOD FOR THE EXPERIMENTAL QUANTIFICATION OF STRUCTURAL SOUND TRANSMISSION IN SHIPS. Journal of Sound and Vibration, 1999, 226, 305-328.	3.9	51
52	SOUND RADIATION FROM A VIBRATING RAILWAY WHEEL. Journal of Sound and Vibration, 2002, 253, 401-419.	3.9	51
53	Track Dynamic Behaviour at High Frequencies. Part 2: Experimental Results and Comparisons with Theory. Vehicle System Dynamics, 1995, 24, 100-114.	3.7	47
54	Wheel-rail Noise Generation, Part IV: Contact Zone And Results. Journal of Sound and Vibration, 1993, 161, 447-466.	3.9	45

4

#	Article	IF	CITATIONS
55	An investigation into the influence of longitudinal creepage on railway squeal noise due to lateral creepage. Journal of Sound and Vibration, 2006, 293, 766-776.	3.9	44
56	Cyclostationarity and the cepstrum for operational modal analysis of mimo systems—Part I: Modal parameter identification. Mechanical Systems and Signal Processing, 2007, 21, 2441-2458.	8.0	43
57	A threshold for the use of Tikhonov regularization in inverse force determination. Applied Acoustics, 2006, 67, 700-719.	3.3	42
58	Component-based model to predict aerodynamic noise from high-speed train pantographs. Journal of Sound and Vibration, 2017, 394, 280-305.	3.9	42
59	Comparison of wheel/rail noise radiation on Japanese railways using the TWINS model and microphone array measurements. Journal of Sound and Vibration, 2006, 293, 496-509.	3.9	40
60	Calculation of noise from railway bridges and viaducts: Experimental validation of a rapid calculation model. Journal of Sound and Vibration, 2006, 293, 933-943.	3.9	39
61	Modelling the effect of rail dampers on wheel–rail interaction forces and rail roughness growth rates. Journal of Sound and Vibration, 2009, 323, 17-32.	3.9	39
62	A hybrid modelling approach for predicting ground vibration from trains. Journal of Sound and Vibration, 2015, 335, 147-173.	3.9	39
63	Investigation of train-induced vibration and noise from a steel-concrete composite railway bridge using a hybrid finite element-statistical energy analysis method. Journal of Sound and Vibration, 2020, 471, 115197.	3.9	39
64	Extended validation of a theoretical model for railway rolling noise using novel wheel and track designs. Journal of Sound and Vibration, 2003, 267, 509-522.	3.9	36
65	Investigation into the validity of two-dimensional models for sound radiation from waves in rails. Journal of the Acoustical Society of America, 2003, 113, 1965-1974.	1.1	36
66	Simulations of roughness initiation and growth on railway rails. Journal of Sound and Vibration, 2006, 293, 819-829.	3.9	36
67	A modelling approach for the vibroacoustic behaviour of aluminium extrusions used in railway vehicles. Journal of Sound and Vibration, 2006, 293, 921-932.	3.9	36
68	On the target frequency for harvesting energy from track vibrations due to passing trains. Mechanical Systems and Signal Processing, 2019, 114, 212-223.	8.0	36
69	Vertical random vibration analysis of vehicle–track coupled system using Green's function method. Vehicle System Dynamics, 2014, 52, 362-389.	3.7	35
70	The role of anti-resonance frequencies from operational modal analysis in finite element model updating. Mechanical Systems and Signal Processing, 2007, 21, 74-97.	8.0	34
71	Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise. International Journal of Rail Transportation, 2017, 5, 87-109.	2.7	33
72	Assessment of measurement-based methods for separating wheel and track contributions to railway rolling noise. Applied Acoustics, 2018, 140, 48-62.	3.3	32

#	Article	IF	CITATIONS
73	A model of a discretely supported railway track based on a 2.5D finite element approach. Journal of Sound and Vibration, 2019, 438, 153-174.	3.9	32
74	Influence of rail fastener stiffness on railway vehicle interior noise. Applied Acoustics, 2019, 145, 69-81.	3.3	32
75	Investigation of the dynamic contact filter effect in vertical wheel/rail interaction using a 2D and a 3D non-Hertzian contact model. Wear, 2011, 271, 328-338.	3.1	31
76	Proving MEMS Technologies for Smarter Railway Infrastructure. Procedia Engineering, 2016, 143, 1077-1084.	1.2	31
77	The influence of the contact zone on the excitation of wheel/rail noise. Journal of Sound and Vibration, 2003, 267, 523-535.	3.9	30
78	The effect of different combinations of boundary conditions on the average radiation efficiency of rectangular plates. Journal of Sound and Vibration, 2014, 333, 3931-3948.	3.9	30
79	Sound transmission loss properties of truss core extruded panels. Applied Acoustics, 2018, 131, 134-153.	3.3	30
80	Flow behaviour and aeroacoustic characteristics of a simplified high-speed train bogie. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230, 1642-1658.	2.0	29
81	Sound radiation of a railway rail in close proximity to the ground. Journal of Sound and Vibration, 2016, 362, 111-124.	3.9	28
82	Experimental study of the aerodynamic noise radiated by cylinders with different cross-sections and yaw angles. Journal of Sound and Vibration, 2016, 361, 108-129.	3.9	27
83	The effect of track load correlation on ground-borne vibration from railways. Journal of Sound and Vibration, 2017, 402, 142-163.	3.9	27
84	Wheel–rail impact loads and noise generated at railway crossings – Influence of vehicle speed and crossing dip angle. Journal of Sound and Vibration, 2019, 456, 119-136.	3.9	27
85	Investigation into the critical speed of ballastless track. Transportation Geotechnics, 2019, 18, 142-148.	4.5	27
86	Differences between Euler-Bernoulli and Timoshenko beam formulations for calculating the effects of moving loads on a periodically supported beam. Journal of Sound and Vibration, 2020, 481, 115432.	3.9	26
87	Pore pressure generation in a poro-elastic soil under moving train loads. Soil Dynamics and Earthquake Engineering, 2019, 125, 105711.	3.8	25
88	Effect of cavity flow control on high-speed train pantograph and roof aerodynamic noise. Railway Engineering Science, 2020, 28, 54-74.	4.4	25
89	Numerical investigation of the effect of cavity flow on high speed train pantograph aerodynamic noise. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 201, 104159.	3.9	25
90	On the rolling noise generation due to wheel/track parametric excitation. Journal of Sound and Vibration, 2006, 293, 566-574.	3.9	24

#	Article	IF	CITATIONS
91	Simplified contact filters in wheel/rail noise prediction. Journal of Sound and Vibration, 2006, 293, 807-818.	3.9	24
92	Time-domain prediction of impact noise from wheel flats based on measured profiles. Journal of Sound and Vibration, 2014, 333, 3981-3995.	3.9	24
93	An assessment of mode-coupling and falling-friction mechanisms in railway curve squeal through a simplified approach. Journal of Sound and Vibration, 2018, 423, 126-140.	3.9	23
94	A comparison of ground vibration due to ballasted and slab tracks. Transportation Geotechnics, 2019, 21, 100256.	4.5	23
95	Experimental procedures for testing the performance of rail dampers. Journal of Sound and Vibration, 2015, 359, 21-39.	3.9	22
96	Automated processing of railway track deflection signals obtained from velocity and acceleration measurements. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 2097-2110.	2.0	22
97	Effect of train speed and track geometry on the ride comfort in high-speed railways based on ISO 2631-1. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 765-778.	2.0	22
98	The horizontal directivity of noise radiated by a rail and implications for the use of microphone arrays. Journal of Sound and Vibration, 2010, 329, 202-220.	3.9	21
99	Effect of rail dynamics on curve squeal under constant friction conditions. Journal of Sound and Vibration, 2019, 442, 183-199.	3.9	21
100	Modelling wheel/rail rolling noise for a high-speed train running along an infinitely long periodic slab track. Journal of the Acoustical Society of America, 2020, 148, 174-190.	1.1	21
101	Wheel/Rail Non-linear Interactions With Coupling Between Vertical and Lateral Directions. Vehicle System Dynamics, 2004, 41, 27-49.	3.7	20
102	Sound radiation from railway sleepers. Journal of Sound and Vibration, 2016, 369, 178-194.	3.9	20
103	Experimental study of the treatment measures for rail corrugation on tracks with Egg fasteners in the Beijing metro. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 1360-1374.	2.0	20
104	Monitoring and repair of isolated trackbed defects on a ballasted railway. Transportation Geotechnics, 2018, 17, 61-68.	4.5	20
105	An engineering model for the prediction of the sound radiation from a railway track. Journal of Sound and Vibration, 2019, 461, 114921.	3.9	20
106	Design, analysis and experimental validation of high static and low dynamic stiffness mounts based on target force curves. International Journal of Non-Linear Mechanics, 2020, 126, 103559.	2.6	20
107	Prediction of rail and bridge noise arising from concrete railway viaducts by using a multilayer rail fastener model and a wavenumber domain method. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 1326-1346.	2.0	20
108	A State-of-the-Art Review of Curve Squeal Noise: Phenomena, Mechanisms, Modelling and Mitigation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2018, , 3-41.	0.3	19

#	Article	IF	CITATIONS
109	Reduction of aerodynamic noise from square bars by introducing spanwise waviness. Journal of Sound and Vibration, 2018, 435, 323-349.	3.9	19
110	Dynamic wheel-rail interaction at high speed based on time-domain moving Green's functions. Journal of Sound and Vibration, 2020, 488, 115632.	3.9	19
111	Train loading effects in railway geotechnical engineering: Ground response, analysis, measurement and interpretation. Transportation Geotechnics, 2019, 21, 100261.	4.5	18
112	Eulerian models of the rotating flexible wheelset for high frequency railway dynamics. Journal of Sound and Vibration, 2019, 449, 300-314.	3.9	18
113	Numerical investigations on the flow over cuboids with different aspect ratios and the emitted noise. Physics of Fluids, 2020, 32, .	4.0	18
114	Comparison of decentralized velocity feedback control for thin homogeneous and stiff sandwich panels using electrodynamic proof-mass actuators. Journal of Sound and Vibration, 2011, 330, 843-867.	3.9	17
115	The effect of temperature on railway rolling noise. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230, 1777-1789.	2.0	17
116	The effects of ballast on the sound radiation from railway track. Journal of Sound and Vibration, 2017, 399, 137-150.	3.9	17
117	The flow and flow-induced noise behaviour of a simplified high-speed train bogie in the cavity with and without a fairing. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 759-773.	2.0	17
118	Application of a wavenumber domain numerical method to the prediction of the radiation efficiency and sound transmission of complex extruded panels. Journal of Sound and Vibration, 2019, 449, 98-120.	3.9	17
119	THE EFFECTS OF TRANSVERSE PROFILE ON THE EXCITATION OF WHEEL/RAIL NOISE. Journal of Sound and Vibration, 2000, 231, 537-548.	3.9	16
120	Effect of wall proximity on the flow over a cube and the implications for the noise emitted. Physics of Fluids, 2019, 31, .	4.0	16
121	A semi-analytical beam model for the vibration of railway tracks. Journal of Sound and Vibration, 2017, 393, 321-337.	3.9	15
122	Estimation of track parameters and wheel–rail combined roughness from rail vibration. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 1149-1167.	2.0	15
123	The noise radiated by ballasted and slab tracks. Applied Acoustics, 2019, 151, 193-205.	3.3	15
124	Improved indirect measurement of the dynamic stiffness of a rail fastener and its dependence on load and frequency. Construction and Building Materials, 2021, 304, 124588.	7.2	15
125	The effects on railway rolling noise of wave reflections in the rail and support stiffening due to the presence of multiple wheels. Applied Acoustics, 2001, 62, 1249-1266.	3.3	14
126	Predicting the effect of temperature on the performance of elastomer-based rail damping devices. Journal of Sound and Vibration, 2009, 322, 674-689.	3.9	14

#	Article	IF	CITATIONS
127	A mixed space-time and wavenumber-frequency domain procedure for modelling ground vibration from surface railway tracks. Journal of Sound and Vibration, 2017, 400, 508-532.	3.9	14
128	A wavenumber domain numerical analysis of rail noise including the surface impedance of the ground. Journal of Sound and Vibration, 2018, 432, 173-191.	3.9	14
129	Implications of the directivity of railway noise sources for their quantification using conventional beamforming. Journal of Sound and Vibration, 2019, 459, 114841.	3.9	14
130	The influence of vehicle–track dynamic coupling on the fatigue failure of coil springs within the primary suspension of metro vehicles. Vehicle System Dynamics, 2020, 58, 1694-1710.	3.7	14
131	Measurements of the high frequency dynamic stiffness of railway ballast and subgrade. Journal of Sound and Vibration, 2020, 468, 115081.	3.9	14
132	Aerodynamic noise of high-speed train pantographs: Comparisons between field measurements and an updated component-based prediction model. Applied Acoustics, 2021, 175, 107791.	3.3	14
133	Analysis of the consistency of the Sperling index for rail vehicles based on different algorithms. Vehicle System Dynamics, 2021, 59, 313-330.	3.7	14
134	Use of a reciprocity technique to measure the radiation efficiency of a vibrating structure. Applied Acoustics, 2015, 89, 107-121.	3.3	13
135	Wavenumber–domain separation of rail contribution to pass-by noise. Journal of Sound and Vibration, 2017, 409, 24-42.	3.9	13
136	An investigation into the effects of modelling assumptions on sound power radiated froma high-speed train wheelset. Journal of Sound and Vibration, 2021, 495, 115910.	3.9	13
137	Numerical investigation of aerodynamic noise generated by circular cylinders in cross-flow at Reynolds numbers in the upper subcritical and critical regimes. International Journal of Aeroacoustics, 2019, 18, 470-495.	1.3	12
138	Can a transmission coefficient be greater than unity?. Applied Acoustics, 2009, 70, 681-688.	3.3	11
139	Velocity-dependent friction in a model of wheel–rail rolling contact and wear. Vehicle System Dynamics, 2011, 49, 1791-1802.	3.7	11
140	Railway rolling noise prediction: field validation and sensitivity analysis. International Journal of Rail Transportation, 2013, 1, 109-127.	2.7	11
141	Validation of a prediction model for tangent rail roughness and noise growth. Wear, 2014, 314, 261-272.	3.1	11
142	Method for obtaining the wheel–rail contact location and its application to the normal problem calculation through â€~CONTACT'. Vehicle System Dynamics, 2018, 56, 1734-1746.	3.7	11
143	Wheel–Rail Impact Loads, Noise and Vibration: A Review of Excitation Mechanisms, Prediction Methods and Mitigation Measures. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 3-40.	0.3	11
144	Variability of the coupling loss factor between two coupled plates. Journal of Sound and Vibration, 2005, 279, 557-579.	3.9	10

#	Article	IF	CITATIONS
145	Curve Squeal Noise. , 2009, , 315-342.		10
146	Using a 2.5D boundary element model to predict the sound distribution on train external surfaces due to rolling noise. Journal of Sound and Vibration, 2020, 486, 115599.	3.9	10
147	Model-based acoustic substitution source methods for assessing shielding measures applied to trains. Applied Acoustics, 2001, 62, 979-1000.	3.3	9
148	The influence of modal behaviour on the energy transmission between two coupled plates. Journal of Sound and Vibration, 2004, 276, 1019-1041.	3.9	9
149	Vibration properties of slab track installed on a viaduct. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230, 235-252.	2.0	9
150	Directivity of sound radiated from baffled rectangular plates and plate strips. Applied Acoustics, 2019, 155, 309-324.	3.3	9
151	A two-and-half dimensional finite element/boundary element model for predicting the vibro-acoustic behaviour of panels with poro-elastic media. Journal of Sound and Vibration, 2021, 505, 116147.	3.9	8
152	Structural waveguide behaviour of a beam–plate system. Journal of Sound and Vibration, 2008, 318, 206-226.	3.9	7
153	A non-reflecting boundary for use in a finite element beam model of a railway track. Journal of Sound and Vibration, 2015, 337, 199-217.	3.9	7
154	Analysis of resonance effect for a railway track on a layered ground. Transportation Geotechnics, 2018, 16, 51-62.	4.5	7
155	Modelling of vibration and noise behaviour of embedded tram tracks using a wavenumber domain method. Journal of Sound and Vibration, 2020, 481, 115446.	3.9	7
156	Vibration reduction of a high-speed train floor using multiple dynamic vibration absorbers. Vehicle System Dynamics, 2022, 60, 2919-2940.	3.7	7
157	Measurements and modelling of dynamic stiffness of a railway vehicle primary suspension element and its use in a structure-borne noise transmission model. Applied Acoustics, 2021, 182, 108232.	3.3	7
158	Noise and Vibration from Railway Vehicles. , 2006, , 279-325.		6
159	Rail roughness and rolling noise in tramways. Journal of Physics: Conference Series, 2016, 744, 012147.	0.4	6
160	A mechanism for overcoming the effects of the internal resonances of coil springs on vibration transmissibility. Journal of Sound and Vibration, 2020, 471, 115145.	3.9	6
161	Modelling train-induced vibration of structures using a mixed-frame-of-reference approach. Journal of Sound and Vibration, 2021, 491, 115575.	3.9	6
162	Effect of different typical high speed train pantograph recess configurations on aerodynamic noise. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235, 573-585.	2.0	6

#	Article	IF	CITATIONS
163	The influence of track design on the rolling noise from trams. Applied Acoustics, 2020, 170, 107536.	3.3	5
164	The shadow effect on the ground surface due to vibration transmission from a railway tunnel. Transportation Geotechnics, 2020, 23, 100335.	4.5	5
165	Numerical investigations on the flow over cubes with rounded corners and the noise emitted. Computers and Fluids, 2020, 202, 104521.	2.5	5
166	A framework to predict the airborne noise inside railway vehicles with application to rolling noise. Applied Acoustics, 2021, 179, 108064.	3.3	5
167	Wheel/Rail Interaction and Excitation by Roughness. , 2009, , 127-173.		4
168	Noise reduction for ballasted track: A comparative socio-economic assessment. International Journal of Transport Development and Integration, 2019, 3, 15-29.	0.9	4
169	The distribution of pantograph aerodynamic noise on train external surfaces and the influence of flow. Applied Acoustics, 2022, 188, 108542.	3.3	4
170	Introduction to Rolling Noise. , 2009, , 11-27.		3
171	Radiation Efficiency of Beam-stiffened Plate: Experimental Setup and Preliminary Results. Procedia Engineering, 2017, 170, 266-273.	1.2	3
172	Modelling of Ground-Borne Vibration When the Train Speed Approaches the Critical Speed. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2018, , 497-508.	0.3	3
173	Investigation of acoustic transmission beneath a railway vehicle by using statistical energy analysis and an equivalent source model. Mechanical Systems and Signal Processing, 2021, 150, 107296.	8.0	3
174	A modelling approach for noise transmission through extruded panels in railway vehicles. Journal of Sound and Vibration, 2021, 502, 116095.	3.9	3
175	Influence study of rail geometry and track properties on railway rolling noise. Journal of Sound and Vibration, 2022, 525, 116701.	3.9	3
176	Wheel–Rail Interaction Noise Prediction and Its Control. , 0, , 1138-1146.		2
177	Sound Radiation from Wheels and Track. , 2009, , 175-222.		2
178	Mitigation Measures for Rolling Noise. , 2009, , 223-279.		2
179	Reply to Comments on Chapter 12 of "Railway Noise and Vibration: Mechanisms, Modelling and Means of Controlâ€, by D. Thompson (with contributions from C. Jones and PE. Gautier), Elsevier, 2009. Applied Acoustics, 2011, 72, 787-788.	3.3	2
180	Energy transfer in a beam-framed structure using a modal method and a wave method at mid frequencies. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 79-95.	2.1	2

#	Article	IF	CITATIONS
181	Reply to "Discussion on â€~Eulerian models of the rotating flexible wheelset for high frequency railway dynamics' [J. Sound Vib. 449 (2019) 300-314]― Journal of Sound and Vibration, 2020, 489, 115665.	3.9	2
182	A transferable method for estimating the economic impacts of track interventions: Application to ground-borne noise reduction measures for whole sections of route. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235, 787-797.	2.0	2
183	Combining the 2.5D FE-BE method and the TMM method to study the vibro-acoustics of acoustically treated rib-stiffened panels. Journal of Sound and Vibration, 2021, 493, 115825.	3.9	2
184	Experimental study of noise mitigation measures on a slab track. Applied Acoustics, 2021, 172, 107630.	3.3	2
185	Hybrid Model for Prediction of Impact Noise Generated at Railway Crossings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2018, , 759-769.	0.3	2
186	Impact Noise. , 2009, , 343-358.		1
187	Sound power and vibration levels for two different piano soundboards. Journal of Physics: Conference Series, 2016, 744, 012091.	0.4	1
188	On the spectrum of rail vibration generated by a passing train. Procedia Engineering, 2017, 199, 2657-2662.	1.2	1
189	A New Model for the Prediction of Track Sound Radiation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2018, , 709-721.	0.3	1
190	Groundborne Railway Noise and Vibration in Buildings: Results of a Structural and Acoustic Parametric Study. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2018, , 193-204.	0.3	1
191	A 2.5D acoustic finite element method applied to railway acoustics. Applied Acoustics, 2021, 182, 108270.	3.3	1
192	A MIXED SPACE-TIME AND WAVENUMBER DOMAIN MODEL FOR PREDICTING GROUND VIBRATION FROM RAILWAY TRACS. , 2015, , .		1
193	Effect of aspect ratios on flow and noise from cuboids. , 2019, , .		1
194	Aerodynamic Noise. , 2009, , 281-314.		0
195	Effect of rounded corners on the flow and noise from a cube. , 2018, , .		Ο
196	Numerical Investigation of the Effect of various High-Speed Train Roof Configurations on Aerodynamic Noise. , 2019, , .		0
197	Modelling Wheel/Rail Rolling Noise for a High-Speed Train Running on a Slab Track. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 613-620.	0.3	0
198	Effect of Ground Conditions and Microphone Position on Railway Noise Measurement Results. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 680-687.	0.3	0

#	Article	IF	CITATIONS
199	Numerical Analysis on the Radiation Efficiency of an Extruded Panel for the Railway Vehicle Using the Waveguide Finite Element and Boundary Element Method. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 134-141.	0.3	0
200	NOISE REDUCTION FOR BALLASTED TRACKS: A SOCIO-ECONOMIC ASSESSMENT. , 2018, , .		0
201	Numerical Investigation of Flow-Induced Noise around a High-Speed Train Bogie in a Simplified Cavity. , 2022, , .		0