Joris Quik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6206781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fate of nano- and microplastic in freshwater systems: A modeling study. Environmental Pollution, 2017, 220, 540-548.	3.7	601
2	Fate and Effects of CeO ₂ Nanoparticles in Aquatic Ecotoxicity Tests. Environmental Science & Technology, 2009, 43, 4537-4546.	4.6	331
3	Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Research, 2014, 48, 269-279.	5.3	205
4	A Review of the Properties and Processes Determining the Fate of Engineered Nanomaterials in the Aquatic Environment. Critical Reviews in Environmental Science and Technology, 2015, 45, 2084-2134.	6.6	172
5	Multimedia Modeling of Engineered Nanoparticles with SimpleBox4nano: Model Definition and Evaluation. Environmental Science & 2017, 2014, 2014, 48, 5726-5736.	4.6	169
6	Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere, 2010, 81, 711-715.	4.2	154
7	Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environmental Toxicology and Chemistry, 2012, 31, 1019-1022.	2.2	141
8	How to assess exposure of aquatic organisms to manufactured nanoparticles?. Environment International, 2011, 37, 1068-1077.	4.8	118
9	Considerations for Safe Innovation: The Case of Graphene. ACS Nano, 2017, 11, 9574-9593.	7.3	94
10	Spatially explicit fate modelling of nanomaterials in natural waters. Water Research, 2015, 80, 200-208.	5.3	90
11	Rapid settling of nanoparticles due to heteroaggregation with suspended sediment. Environmental Toxicology and Chemistry, 2014, 33, 1766-1773.	2.2	86
12	Simplifying modeling of nanoparticle aggregation–sedimentation behavior in environmental systems: A theoretical analysis. Water Research, 2014, 62, 193-201.	5.3	72
13	Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods. Journal of Chromatography A, 2009, 1216, 613-622.	1.8	66
14	Multimedia environmental fate and speciation of engineered nanoparticles: a probabilistic modeling approach. Environmental Science: Nano, 2016, 3, 715-727.	2.2	66
15	Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. Environmental Science: Nano, 2020, 7, 351-367.	2.2	59
16	Guidance for the prognostic risk assessment of nanomaterials in aquatic ecosystems. Science of the Total Environment, 2015, 535, 141-149.	3.9	49
17	Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone $\hat{a} \in \hat{c}$ oated silver nanoparticles to organisms of different trophic levels. Environmental Toxicology and Chemistry, 2015, 34, 1239-1245.	2.2	43
18	Towards validation of the NanoDUFLOW nanoparticle fate model for the river Dommel, The Netherlands. Environmental Science: Nano, 2016, 3, 434-441.	2.2	39

Joris Quik

#	Article	IF	CITATIONS
19	Genotoxic effects in the Eastern mudminnow (Umbra pygmaea L.) after exposure to Rhine water, as assessed by use of the SCE and Comet assays: A comparison between 1978 and 2005. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2007, 631, 93-100.	0.9	32
20	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	2.2	32
21	Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. Environmental Science: Nano, 2019, 6, 505-518.	2.2	24
22	A model sensitivity analysis to determine the most important physicochemical properties driving environmental fate and exposure of engineered nanoparticles. Environmental Science: Nano, 2019, 6, 2049-2060.	2.2	22
23	Fate modelling of nanoparticle releases in LCA: An integrative approach towards "USEtox4Nano― Journal of Cleaner Production, 2019, 206, 701-712.	4.6	21
24	A Semi-Automated Workflow for FAIR Maturity Indicators in the Life Sciences. Nanomaterials, 2020, 10, 2068.	1.9	21
25	Directions in QPPR development to complement the predictive models used in risk assessment of nanomaterials. NanoImpact, 2018, 11, 58-66.	2.4	18
26	Environmental Risk Assessment of Nanomaterials in the Light of New Obligations Under the REACH Regulation: Which Challenges Remain and How to Approach Them?. Integrated Environmental Assessment and Management, 2020, 16, 706-717.	1.6	18
27	Lake retention of manufactured nanoparticles. Environmental Pollution, 2015, 196, 171-175.	3.7	13
28	FAIR assessment tools: evaluating use and performance. NanoImpact, 2022, 27, 100402.	2.4	10
29	Environmental Risk Assessment (ERA) of the application of nanoscience and nanotechnology in the food and feed chain. EFSA Supporting Publications, 2020, 17, 1948E.	0.3	9
30	Dissipative particle dynamic simulation and experimental assessment of the impacts of humic substances on aqueous aggregation and dispersion of engineered nanoparticles. Environmental Toxicology and Chemistry, 2018, 37, 1024-1031.	2.2	6
31	Local Scale Exposure and Fate of Engineered Nanomaterials. Toxics, 2022, 10, 354.	1.6	1
32	Genotoxic effects in the Eastern mudminnow (Umbra pygmaea L.) after exposure to Rhine water using the SCE and comet assay: A comparison between 1978 and 2005. Toxicology Letters, 2007, 172, S164.	0.4	0